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ABSTRACT Inferred ancestral nucleotide states are increasingly employed in analyses of within- and
between -species genome variation. Although numerous studies have focused on ancestral inference
among distantly related lineages, approaches to infer ancestral states in polymorphism data have received
less attention. Recently developed approaches that employ complex transition matrices allow us to infer
ancestral nucleotide sequence in various evolutionary scenarios of base composition. However, the
requirement of a single gene tree to calculate a likelihood is an important limitation for conducting ancestral
inference using within-species variation in recombining genomes. To resolve this problem, and to extend
the applicability of ancestral inference in studies of base composition evolution, we first evaluate three
previously proposed methods to infer ancestral nucleotide sequences among within- and between-species
sequence variation data. The methods employ a single allele, bifurcating tree, or a star tree for within-
species variation data. Using simulated nucleotide sequences, we employ ancestral inference to infer
fixations and polymorphisms. We find that all three methods show biased inference. We modify the
bifurcating tree method to include weights to adjust for an expected site frequency spectrum, “bifurcating
tree with weighting” (BTW). Our simulation analysis show that the BTW method can substantially improve
the reliability and robustness of ancestral inference in a range of scenarios that include non-neutral and/or
non-stationary base composition evolution.
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Knowledge of ancestral sequences allows inference of changes on each
branch of a phylogenetic tree and can be highly useful for evolutionary
analyses. In some cases, ancestral DNA samples can be sequenced
directly, but for the vast majority of studies, ancestral states must be

inferred statistically. Severalmethodshavebeendeveloped to infer states
at ancestral nodes based on likelihood calculation assuming a phyloge-
netic tree (e.g., Yang et al. 1995; Koshi and Goldstein 1996; Pagel et al.
2004; Yang 2007; Matsumoto et al. 2015). These methods can incor-
porate complex transition rate matrices and allow accurate inference of
ancestral states for nucleotide and amino acid sequences in a range of
evolutionary scenarios. However, transition rate matrix/fixed tree
(TRMFT) approaches require knowledge of phylogenetic relationships
among genome sequences and assume that the same relationships hold
across sites (Yang 2006). This restriction is problematic for ancestral
inference for sequences taken from a single population because recom-
bination can cause different genomic regions to have different geneal-
ogies.

Determining patterns and testing the causes of base composition
evolution often relies on ancestral inference (e.g., Akashi 1995; Kliman
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1999; Begun 2001; Takano-Shimizu 2001; Duret et al. 2002; Gaucher
et al. 2003, 2008; Groussin andGouy 2011; Aoki et al. 2013; Terekhanova
et al. 2013; Glémin et al. 2015, Bolívar et al. 2015; Clément et al. 2017).
Previous studies have revealed fixation biases (weak selection and/or
biased gene conversion) elevating GC content (e.g., Akashi 1995,
1999; Kliman 1999; Maside et al. 2004; Galtier et al. 2006; Haddrill
and Charlesworth 2008; Muyle et al. 2011; Lachance and Tishkoff
2014; Glémin et al. 2015) and have shown strong lineage-dependence
in base composition evolution (e.g., Akashi 1996; Duret et al. 2002;
Powell et al. 2003; Akashi et al. 2006; Nielsen et al. 2006; Singh et al.
2009; Groussin and Gouy 2011; Lartillot 2012; Weber et al. 2014).
Although long-term evolutionary analyses of base composition
have incorporated sophisticated models using TRMFT ancestral in-
ference methods, population genetic analyses of base composition
evolution have employed a limited number of approximate methods
for ancestral inference. Akashi (1995) and Akashi and Schaeffer
(1997) inferred ancestral states of nucleotide sequences in Drosophila
species using maximum parsimony (i.e., assigning ancestral states
to minimize the numbers of evolutionary changes required to explain
the observed data). Clemente and Vogl (2012), Poh et al. (2012),
Bolívar et al. (2015) and Clément et al. (2017) employed a similar
approach but used only sites at which all outgroup species have the
same state. In such cases, they assumed that the outgroup state is the
ancestral condition in order to estimate the number of fixations and
site frequency spectrum (SFS) of GC content-altering mutations.

Other studies have employed likelihood methods for ancestral in-
ference assuming a common genealogy for all sites. Kern and Begun
(2005) assigned a star tree to samples from a single species. In contrast,
Akashi et al. (2006) and Matsumoto et al. (2016) assigned nucleotide
states segregating within species to bifurcating lineages within each
species. Finally, Jackson et al. (2017) employed single sequences from
each sampled species to infer ancestral states and assumed identity of
ancestral states at within and between species nodes. These approaches
allow TRMFT ancestral inference with complex models (e.g., different
transition probabilities among 12 nucleotide mutation classes).

Assuming a single gene tree for polymorphism data is unrealistic
for recombining regions and the reliability of the ancestral inference
approaches described above for within- and among-species data are
largely unknown (but see Hernandez et al. (2007) for maximum par-
simony approach). Some studies have proposed Bayesian methods to
consider phylogenetic uncertainty giving a prior distribution of phy-
logeny (Huelsenbeck and Bollback 2001, Pagel et al. 2004). However,
these methods were developed to address uncertainty in deep phylog-
enies and their applicability to within species variation is unclear (the
number of possible genealogies for a given region can be very large and
trees can differ among regions). Previously, we implemented the GTR-
NHb model which allows lineage-specific transition rates and appears
to be a robust approach to inferring ancestral states under several
evolutionary scenarios of base composition (Matsumoto et al. 2015).
This method is currently only available in the BASEML software pack-
age which employs a TRMFT ancestral inference method (Yang 2007).

In this study, we focus on TRMFT likelihood-based ancestral in-
ferencemethods to studybase composition evolutionwithin and among
closely related species. We use BASEML for ancestral inference and
examine the accuracy of estimations of the numbers of fixations, poly-
morphicmutations andSFSusing themethods thatassigna single tree to
within species polymorphism. We evaluated the accuracy of the three
methods explained above. For simplicity, we refer to the methods in
Jackson et al. (2017), Matsumoto et al. (2016) and Kern and Begun
(2005) as “single allele” (SA), “bifurcating tree (BT)” and “star tree”
(ST), respectively. We also introduce a new approach that incorporates

allele frequency information in the inference of ancestral states at poly-
morphic sites (“bifurcating tree with weighting (BTW)”)

In order to access the reliability of the methods, we generated
nucleotide sequences by computer simulation assuming neutral or
nearly-neutral base composition evolution. Using nucleotide sequences
generated for six species, we employed the tree assignment methods
described above and conducted ancestral inference under a likelihood
basedmethodassuminga complexnucleotide substitutionmodel,GTR-
NHb. For these data, SA, BT, and ST approaches suffer from consider-
able estimation bias. However, the BTW method using the expected
SFS under neutral equilibrium (BTWne) allows accurate estimation of
the SFS in several scenarios of base composition evolution and this
accuracy is relatively robust to the fit of the expected SFS. In addition,
even when the actual SFS shows strong departure from the SFS under
neutral equilibrium, an iterative approach to BTW substantially in-
creases the accuracy of the estimation. Our analyses support that an-
cestral inference using the approximate BTW method may be
sufficiently reliable for within-population analyses of the base compo-
sition of non-coding regions, introns or codon usage bias in a wide
range of evolutionary scenarios. However, we point out some limita-
tions of models that do not incorporate population genetic processes,
especially ancestral polymorphism.

METHODS
We describe below (1) the computer simulation to generate nucleotide
sequences, (2) the process of inferring polymorphisms and fixations
from ancestral inference results, and (3) the four ancestral inference
methods evaluated in this study. Acronyms used in the text are sum-
marized in Table 1.

Computer simulation
Computer simulations were designed to emulate base composition
evolution among six species using a tree and approximate distances
for the Drosophila melanogaster subgroup (Figure 1). In the discussion
below, “a-b lineage” will refer to the lineage connecting nodes a and b
and “a node (population)”will refer to node (or population) a using the
node names in Figure 1. Forward-running simulations were conducted
similarly to Matsumoto et al. (2016) except we consider a four- (rather
than two-) state model of base composition. Each simulation was ini-
tiated with a “burn-in” process to allow populations to reach equilib-
rium base composition and a stationary frequency distribution for
polymorphic sites. Burn-in parameters were set to: population size N
= 1,000, mutation rates between any two nucleotides u = 2.5·1026, and
recombination rate between neighboring sites in each mating pair r =
0.01. Recombination rates of Nr = 10 give results close to free recom-
bination expectations (Figure S1 in Matsumoto et al. 2016). We
modeled haploid genomes with 105 nucleotide sites. Evolution
proceeds in discrete generations and in some scenarios, we
assigned higher viability to individuals with elevated GC content
with fitness of individual j having x A or T nucleotides calculated
as fj = (1 - s)x. After viability selection, sequences undergo muta-
tion and random pairing/recombination and the process is re-
peated with the resulting sequences. We will refer to selection
coefficients and GC contents at the mstyeo node (end of burn-
in) as s0 and GC0, respectively. Three values of GC0 were
employed: 0.5 (s0 = 0), 0.7 (s0 = 0.00043) and 0.9 (s0 = 0.0011).
Note that evolutionary dynamics under this scenario of weak se-
lection favoring GC are indistinguishable from expectations under
Nagylaki’s (1983) model of GC-biased gene conversion without
selection. We will employ the term “fixation bias” to include se-
lection and/or biased gene conversion favoring GC.
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The initial base composition of all sequences was set to expected
equilibriumvalues at the start of each burn-in and lineageswere evolved
for 20,000 generations. The resulting populations were used in down-
stream simulations. When a simulation reached time points for lineage
splitting (internalms, ty, eo, tyeo,mstyeo, Figure 1A), the population of
the ancestral lineage was duplicated to create initial populations for the
two descendent populations (ancestral polymorphism can segregate in
the derived lineages but there is no gene flow after the split). We
recorded sequence changes throughout the simulation to track actual
numbers of fixations and polymorphic mutations, and SFS. 10 se-
quences were randomly chosen from each population shown in Figure
1 to test inference methods. Some of the analyses employed subsets or
alterations of the samples as explained below.

The twomain evolution scenarios considered in this study are shown
in Figure 1. The first is a stationary process in which all lineages share
burn-in parameter values. Lineage lengths were set to give rough cor-
respondence to synonymous divergence within the D. melanogaster
subgroup (Akashi et al. 2007): 3,610 generations for mstyeo-tyeo line-
age, 10,840 generations for mstyeo-ms lineage, and 7,230 generations
for all other lineages give expected sequence divergences of approxi-
mately 2.5%, 7.5% and 5%, respectively, in the stationary scenario with
GC0 = 0.7. In our simulations, the expected time to the within-popu-
lationmost recent common ancestor (MRCA) is 2N = 2000 generations
(for stationary, neutral evolution). Lineage lengths in these simulations
aremuch greater than the expected time toMRCA and shared ancestral
polymorphism should be rare among terminal node populations. The
second scenario models non-stationary evolution, in which themstyeo-
ms, tyeo-ty and ty-t lineages are affected by stronger selection (2s0) and
ms-m, ty-y, eo-o and mstyeo-tyeo lineages are affected by weaker selec-
tion (s0/3) compared with the burn-in values (Figure 1B). Other pa-
rameter values are identical to those in the stationary scenario.We refer
to these non-stationary simulations as “fixation bias change” scenarios.

We also simulated non-stationary evolution with demographic
changes. Two scenarios consider population size reductions in the
ms-m lineage (demA: population size reduced to 100 at 7220th gener-
ation, demB: population size reduced to 100 at 7130th generation). The
other two scenarios experience population size expansions in thems-m
lineage (demE: population size increased to 10000 at 7130th generation
and demF: population size increased to 10000 at 6230th generation).
The SFSs in them population of these scenarios showed large deviation
from the SFS under neutral equilibrium. Parameters other than pop-
ulation size were identical to those used in the stationary scenario for
GC0 = 0.7. The dem scenarios are similar to the depiction in Figure 1A
except for changes in N on the ms-m lineage. In this study, we focused

on whether the deviations from the SFS under neutral equilibrium
caused by the demographic change scenarios affect the accuracy of
ancestral inference. We considered other demographic scenarios that
have smaller impacts on the SFS (see Figure S7 and Table S2).

We conducted a computer simulation for each parameter set to
produce data sets to test ancestral inference methods. Ancestral in-
ference employed the species phylogeny shown in Figure 1 and we
inferred probabilities of ancestral states using BASEML under the
GTR-NHb model (except where noted otherwise). For a given simula-
tion, we replicated sampling and ancestral inference 100 times (all steps
in the ancestral inference process were conducted independently for
each replicate) to estimate confidence intervals on counts of mutations
in three categories, pu (preferred to unpreferred, GC/AT, G or C to
A or T), up (AT / GC) and pp+uu (GC / GC and AT / AT).
“Polymorphic” or “segregating” sites will refer to sites at whichmultiple
states are found within a population sample. “Fixations” will refer to
derived states that are shared among the sampled alleles (including
mutations common to the entire population as well as those shared
within the sample but not the entire population). Fixations include
mutations that arose after the split with a sister species as well as
mutations that pre-date species splitting (ancestral polymorphism).
For example, among fixations on the ms-m lineage, the majority orig-
inated after the ms node but a substantial fraction originated prior to

n Table 1 Key acronyms used in the text

Acronym Meaning

SFS site frequency spectrum
TRMFT transition rate matrix/fixed tree likelihood-based method for sequence evolution inference
PFAP parallel fixation of ancestral polymorphism
SA single allele method for ancestral inference
BT bifurcating tree method for ancestral inference
ST star tree method for ancestral inference
BTW bifurcating tree with weighting by expected SFS method for ancestral inference
SFSne site frequency spectrum under neutral equilibrium
BTWne BTW with weighting by expected SFS under neutral equilibrium
iterative BTWest iterative BTW analysis with weighting by estimated SFS in the previous round
AWP Averaging Weighted by Probability method for fixation counting
EMC Expected Markov Counting method for fixation counting
rpd ratio of the number of polymorphic sites to the number of fixed differences

Figure 1 Phylogenetic relationships and evolutionary scenarios used
to generate simulated sequences. Tree is a simplified depiction of
relationships among six D. melanogaster subgroup species (Ko et al.
2003). Two selection schemes, stationary and fixation bias change
scenarios were considered in the simulations. Lineage-specific selec-
tion intensities are expressed by different line-formatting in the phy-
logeny.
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this ancestral node (in the stationary scenario with GC0 = 0.5, this
fraction was about 28%).

Reconstructing polymorphisms and fixations
We conducted ancestral inference at internal nodes using the sequence
samples and trees as input. Unless noted otherwise, all analyses
employed the GTR-NHb transition rate model implemented in
BASEML software (Yang 2007; Matsumoto et al. 2015) and ancestral
reconstructions were used to infer polymorphisms and fixations. Follow-
ing Matsumoto et al. (2015), we ran BASEML 10 times and employed
only the result with the highest likelihood. For inference of within-
species polymorphisms, we compared estimated joint probabilities of
ancestral states (probability for a set of ancestral states at all internal
nodes) by BASEML and states of the 10 sequences sampled from the
population. For example, consider a case where nine individuals
have nucleotide A and one individual has nucleotide C at a given site
among the sampled sequences. If the estimated ancestral states at this
polymorphic site are A and C with probabilities 0.6 and 0.4, respec-
tively, we counted 0.6 A / C polymorphic mutations in frequency
class 1 (singletons) and 0.4 C / A polymorphic mutations in fre-
quency class 9. Repeating this process across all sites, we estimated the
number of polymorphic mutations and their SFS. Sites at which more
than two nucleotides are segregating were filtered in all analyses; the
proportion of such sites was , 1% among all sites and 5–7% among
polymorphic sites.

Ancestral inference under GTR-NHb allows estimation of the num-
ber of fixations considering lineage and mutation-category specific
parameters.We examined the accuracy of the estimation of the number
of fixations as follows. If the estimated states at ancestral node a and
descendant node b are T and G with probabilities 0.6 and A and C with
probability 0.4, respectively, we “counted” 0.6 T/ G and 0.4 A/ C
fixations on the a-b lineage. This method, referred to as AWP (Aver-
agingWeighted by Probability), slightly underestimates the numbers of
fixations when multiple hits occur at a same site within a lineage
(Matsumoto et al. 2015). In this study, we used AWP only for the
BTWmethod and for other methods, we used EMC (ExpectedMarkov
Counting) implemented in BASEML in which the number of substi-
tutions is counted over the Markov chain process of substitution con-
sidering the change of base composition along a branch (Matsumoto
et al. 2015).

Ancestral inference method 1: Single allele (SA)
We performed SA analyses using a single sequence sampled from each
population as described in Jackson et al. (2017). First, we randomly
sampled 10 sequences from each population in Figure 1 and then
randomly selected one sequence for the ancestral inference step. We
assumed that the states at thems, ty and eo nodes are the ancestral states
at polymorphic sites in the (m and s), (t and y), and (e and o) popula-
tions respectively (i.e., in thems clade, we assumed no fixations after the
split between the ms-m and ms-s lineages). We estimated the numbers
of polymorphic mutations and their SFS in the a population by com-
paring the inferred ancestral states at the ab node and the observed
states in the sample of 10 sequences from the a population as explained
above.We estimated the numbers of fixations on the ab-a lineage using
the EMC approach.

Ancestral inference method 2: Bifurcating tree (BT)
In the BT method, we constructed a pair of representative sequences
(referred to as “collapse-pair” sequences) from the population samples
for each species. The detailed process is shown in Figure 2. For sites that
are monomorphic within the species sample, the same nucleotide was

assigned to both collapse-pair sequences. At polymorphic sites, the two
segregating nucleotides were assigned randomly to the collapse-pair
sequences. Note that site frequency information is lost and associations
among sites are randomized in this approach. The phylogeny shown in
Figure 2B was assigned to 2·6 collapse-pair sequences and we inferred
probabilities of ancestral states at the nodes representing the common
ancestors of the collapse pair sequences (e.g., m’, s’, t’, y’, e’ and o’). In
the BT and other methods below, we compared the inferred ancestral
states at the X’ node with observed states among the 10 sampled se-
quences to estimate the numbers of polymorphic mutations and their
SFS in the a population. We estimated the numbers of fixations on the
ab-a’ lineage using the EMC approach.

Ancestral inference method 3: Star tree (ST)
For ST inference, we assigned a star phylogeny (a single root node
for within-species data) to each sample of 10 sequences for ancestral
inference.Toreducecomputational time,weapplied thismethodonly to
the m population. For each of the other five terminal nodes (species),
we employed a single sequence consisting of the ancestral nucleotide
states of each site (s’, t’, y’, e’ and o’ nodes in Figure S1). Note that this
effectively reduces terminal lineage branch lengths compared to input
data used for the other inference methods. Using the phylogeny shown
in Figure S1, we inferred ancestral states at node m’ and estimated the
numbers and SFS of polymorphic mutations. We also estimated the
numbers of fixations on the ab-a’ lineage using the EMC approach.

Ancestral inference method 4: Bifurcating tree with
weighting (BTW)
The BT method does not incorporate allele frequency information
within the sampled nucleotide sequences and we expected inference
error and/or biases to arise from effectively assuming that all site
frequencies are 0.5.We employed a straightforward approach to weight
probabilities of ancestral configurations using an expected SFS.We refer
to this approach as theBTWmethod. Inmost cases,we used anexpected
SFS for neutral mutations sampled randomly from a population at
equilibrium (SFSne, Fisher 1930; Wright 1969) for weighting. Consider
a site configuration with i nucleotides in stateA1 and n - i nucleotides in
stateA2. The BT approach gives ancestral probabilities PBT(A1) and PBT
(A2) for ancestral states A1 and A2, respectively, at this site. We weight
these probabilities using the SFSne. We calculated F(i) and F(n - i), the
expected proportions of polymorphic sites with derived states with
counts of i and n - i in a sample of n sequences respectively using
equation [30] in Sethupathy and Hannenhalli (2008). We calculated
the expected proportion of sites where nucleotide A1 is the ancestral
state, Pne(A1) = F(i) / [F(i) + F(n - i)] and the expected proportion of
sites where nucleotideA2 is the ancestral state Pne (A2) = F(n - i) / [F(i) +
F(n - i)]. The weighted joint probabilities of ancestral configurations are
PBTW(A1) = PBT(A1) Pne(A1) and PBTW(A2) = PBT(A2) Pne(A2). If the
estimated ancestral state differs from both segregating nucleotides, we
set the probability (PBTW) to zero (note that such sites were very rare
and showed low probabilities in the bifurcated tree method, in most
case � 0.01). We then adjusted joint probabilities so that, at each site,
the probabilities of possible ancestral configurations sum to one. We
refer to the BTW method using SFSne as BTWne.

We also examined an iterative approach to SFS estimation.An initial
round of ancestral state/SFS inference is conducted under BTWwith an
arbitrary SFS for weighting (e.g., BTWne using SFSne). The resulting SFS
is employed for weighting in the next round of BTW analyses and this
process is repeated. We refer to this method as iterative BTWest. Note
that we used the AWP approach to estimate the number of fixations
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because the BTWmethods adjusts joint probabilities at ancestral states
by SFS weighting and the EMC approach is not applicable.

Data availability
Computerprogramsand inputfilesused to simulate sequence evolution,
generate collapse-pair sequences and conduct BTW analysis are avail-
able at https://github.com/tomotakamatsumoto/Matsumoto_Akashi_
AIpoly_codes. Open source license information is available at https://
opensource.org/licenses/MIT. Figure S1 shows the phylogeny used in the
ST method. Figures S4 and S7 show the actual SFS’s for the simulation
scenarios. Table S14 shows the comparison of the SFSs estimated under
BTW and the method proposed in Keightley et al. (2016). Other supple-
mentary figures and tables show the accuracy of fixation and polymor-
phism inference under several evolutionary scenarios and methods. All
supplementary figures and tables are provided as a single file. Supplemen-
tal material available at Figshare: https://doi.org/10.25387/g3.5996342.

RESULTS

Stationary scenarios
We first examined the performance of three previously suggested
ancestral inference methods that have been employed to estimate the
numbers polymorphic mutations and their SFS and the numbers of
fixations among closely related species.We discuss results for stationary
base composition scenarios without selection (GC0 = 0.5) and with
selection (GC0 = 0.7) for the bifurcating tree (BT) and star tree (ST)
methods because these approaches showed contrasting biases in the
estimation of SFS. We then compare results for the single allele (SA)
method.

The BT method biases the estimated SFS toward a “flat” (uniform)
distribution. For the m population in GC0 = 0.5, this bias causes un-
derestimation and overestimation of the proportions of polymorphic
mutations in low and high frequency classes, respectively (Figure 3A).
Such errors bias SFS toward patterns consistent with positive selection

Figure 2 Process for creating input data for bifurcating tree (BT) ancestral inference. (A) The process to make two “collapse-pair” sequences in
the BT method. (B) phylogeny used in the BT method. Node names are from Figure 1. x’ shows the MRCA of population (species) x. x1 and x2 are
collapse-pair sequences.
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or deviation from equilibrium after population size reduction. We
measured goodness of fit between estimated and actual SFS to compare
the estimation accuracy amongmethods (Figure 4, Table S1). Accuracy
of the estimation of the total numbers of polymorphic mutations was
examined separately (Figure S2). BT inference results in substantial
differences between estimated and actual SFS for all mutation cate-
gories both at GC0 = 0.5 and GC0 = 0.7.

BT estimation employs collapse-pair sequences that are constructed
without regard to the prevalence of the states in thewithin-species sample.
This procedure biases ancestral inference toward equal probabilities
that each polymorphic state is ancestral. Importantly, in GC0 = 0.7,

estimation error is greater for up than for pu mutations and results in
a stronger bias toward a flat SFS for up changes (Figure S3A and B). Such
patterns arise because the numbers of polymorphisms differ among
mutation categories. In GC0 = 0.7, pumutations outnumber up because
of high GC content and therefore, misidentifying pu as up has a larger
proportionate impact on estimated up counts.

Ancestral inference errors can bias tests of natural selection. Differ-
ences in the SFS between different mutation categories interspersed
within DNA can reveal differences in their fitness effects (Sawyer et al.
1987). In GC0 = 0.5, all mutations evolve neutrally and their SFS are
similarly biased under the BT method. However, in GC0 = 0.7, the

Figure 3 Actual vs. estimated numbers of polymorphic pu mutations for each frequency class. Results for four inference methods: BT, ST, SA and
BTWne are shown. The legends applies across graphs. The simulation assumed stationary evolution with GC0 = 0.5 and results are shown for them
population. Population sampling and following ancestral inference were replicated 100 times. The figures show the average and the 95%
confidence interval among the replicates. The scales of unlabeled axes are shared across graphs in the same columns and in the same rows.
This standard applies to all following figures.
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stronger bias toward a flat SFS for upmutations than for pumutations
can exaggerate differences in their SFS. In the stronger selection case,
this bias increases because the ratio of pu to up polymorphisms in-
creases (in GC0 = 0.9, the estimated number of up mutations in fre-
quency class nine is about twice the actual value). Note that BT biases
should not produce false signals of selection if highGC ismaintained by
mutation biases at equilibrium because the expected numbers of up and
pu polymorphisms do not differ in such a scenario. Changes in muta-
tion rates, however, can lead to unequal numbers of polymorphic mu-
tations among mutation categories when base composition has not
reached equilibrium. For example, if GC / AT mutation rates in-
crease, the numbers of pu mutations will become larger than that of
up. In such a case, the stronger estimation bias toward a flat SFS for up
mutations could cause a false positive signature of fixation bias.

AlthoughSFS estimation is unreliableunder theBTmethod, the total
numbers of polymorphic mutations appear to be estimated accurately
(Figure S2). This similarity between estimated and actual values appears
to reflect a counter-balance between overestimation of the number of
polymorphic mutations in high frequency classes and underestimation
of those in low frequency classes and may not apply for other evolu-
tionary scenarios.

The BT method underestimates the numbers of fixations in all
mutation categories (Figure 5). This bias appears to reflect a difference
between our simulation of population genetic processes and BASEML
parameterization caused by parallel fixations of ancestral polymor-
phism (PFAP). BASEML employs a transition-state model that as-
sumes parameter homogeneity (across sites and over time) within
lineages. “Fixations” in our simulations are heterogeneous; for a given
transition (ancestral and derived state), the probability of parallel

fixations of ancestral polymorphism in sister species is considerably
higher than the probability of independent originations followed by
fixations in two lineages. We confirm that the estimated number of
fixations are similar to actual values filtered for PFAP occurrences
(actualfPFAP) (Figure 5). In our simulations, PFAP events are common
because terminal lineages are relatively short, levels of ancestral varia-
tion are high, and population sizes are maintained through species
splitting events.

In contrast to the BT method, the star tree approach (ST) leads to
overestimation of the proportions ofmutations in low frequency classes
and underestimation of those in high frequency classes (Figure 3B).
Under this method, inference is strongly biased toward attributing the
prevalent state in the sample as ancestral because such configurations
reduce the required numbers of changes in the tree (Figure S1). For
example, consider a site at which the frequencies of two polymorphic
nucleotides, A and T, are 0.6 and 0.4, respectively in a sample of
10 sequences. The scenario in which T is ancestral requires six inde-
pendent changes compared to four changes for the scenario in which A
is ancestral. If the probability of nucleotide change within a lineage is
low, two additional changes would greatly decrease the probability that
the rare state, T, is ancestral. Overestimation of the probabilities that
common states are ancestral causes over- and under-estimation of the
numbers of polymorphisms in low and high frequency classes, respec-
tively (Figure 3B). Differences between actual and estimated SFSs are
considerable; the estimated numbers polymorphic mutations in high
frequency classes are close to zero (Figure 3B, Figure 4, Table S1).

ST estimation errors may impact data analyses because mutation
categories are not equally affected by the biases. Almost all pu (up)
mutations in high frequency classes are mis-inferred to be up (pu)

Figure 4 Performance of ancestral inference
methods for estimating the SFS of polymorphic
mutations in stationary GC content scenarios.
x2goodness of fit statistics were calculated using
actual vs. estimated numbers of polymorphic muta-
tions for each mutation category. In each frequency
class, the proportions of actual polymorphic muta-
tions were used to calculate “expected” values to
compare to the inferred numbers of polymorphisms
(“observed” values). x2 statistics were calculated for
each replicate with these expected and observed
values. The gray scales and cell values give the
numbers of replicates showing “poor” fits between
observed and expected values (x2 $ 13.0) and
“good” fits (x2 # 3.5). Low and high x2 cutoffs
correspond to P $ 0.9 and # 0.1 for x2 goodness
of fit tests with the degree of freedom = 8. Note
that x2 values strongly depend on the number of
polymorphic mutations; results are comparable
among different methods for the same simulation
scenario and mutation category, but are only com-
parable among different scenarios or mutation cat-
egories if their sample sizes are similar. The numbers
of polymorphic mutations in each scenario and
mutation category are shown in Table S1. The
SFS of the m population was estimated under
four inference methods: BT, ST, SA and BTWne.
The simulation assumed stationary evolution with
GC0 = 0.5 and 0.7. Population sampling and an-
cestral inference were replicated 100 times.
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mutations in low frequency classes. If the numbers of pu polymor-
phisms are larger than the numbers of up polymorphisms, the skew
toward rare variants in the SFS will be larger for up mutations. Such
biases are problematic when the SFSs or average frequencies of pu and
up mutations are compared to test for fixation biases caused by weak
selection or biased gene conversion in base composition evolution. In
scenarios of non-neutral base composition bias (e.g., GC0 = 0.7; Figure
S3C andD), the estimation error explained above would underestimate
the advantageous effect of up mutations (or deleterious effect of pu
mutations), or the effect of biased gene conversion toward GC. In
addition, changes in mutation rate can cause a false signature of selec-
tion and biased gene conversion (similar to the BT method). For ex-
ample, SFS of pu mutations can show stronger skews toward rare

variants if base composition has not reached equilibrium after a up
mutation rate increase. This can cause a false signature of a deleterious
effect of pu mutations (or advantageous effect of up mutations), or
biased gene conversion toward GC.

ST inference also yields inaccurate estimates of the total numbers of
polymorphic mutations when base composition is under selection
(Figure S2B). In this method, almost all pu (up) mutations in high
frequency classes are inferred as up (pu) mutations in low frequency
classes. Therefore, the difference in the total numbers of polymorphic
mutations in GC0 = 0.7 causes large over- and under-estimation of the
total numbers of pu and up polymorphic mutations, respectively (Fig-
ure S2B, S3C and D). In the neutral case (GC0 = 0.5), the total numbers
of pu and up polymorphic mutations are almost equal and therefore,

Figure 5 Actual vs. estimated numbers of fixations under four ancestral inference methods. Results are for fixations in the ms-m’ lineage (ms-m
lineage in SA). Among actual fixations, parallel fixations of ancestral polymorphism (PFAP) in the ms-m’ and ms-s’ lineages are shown separately
from non-PFAP fixations (actualfPFAP). The legend applies to both graphs. The simulation assumed stationary scenario with (A) GC0 = 0.5 and (B)
0.7. Population sampling and ancestral inference were replicated 100 times. Averages and 95% confidence interval of counts among the
replicates are shown. Note that y-axis values do not start at zero.
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the counter-balancing of the errors results in similarity of estimated and
actual numbers of polymorphic mutations (Figure S2A). This error-
balancing also occurs when high GC is maintained by mutation rate
bias at equilibrium without selection.

The STmethod shows relatively accurate estimation of the numbers
of fixations (Figure 5). This accuracy also appears to reflect counter-
balancing effects among different errors. The STmethod overestimates
the numbers of fixations by attributing polymorphic states at higher
frequency to the MRCA node. This overestimation can be partly com-
pensated by the underestimation because of PFAP. However, the com-
pensation is not exact and the ST method shows overestimation of
the number of fixations when fixation biases affect base composition
(Figure 5).

Differences in polymorphism/divergence ratios (rpd) among muta-
tion categories interspersed within DNA can reveal differences in their
fitness effects (McDonald and Kreitman 1991). In the ST method,
estimation errors for the total numbers of polymorphic mutations
can be considerable and can differ in direction among mutation cate-
gories (Figure S2B). For example, for GC0 = 0.7, rpd for pu and up
mutations are 15% underestimated and 7% overestimated, respectively
[this reflects 6% underestimation and 10% overestimation of the num-
bers of polymorphisms (Figure S2B) and 9% and 3% overestimation of
the numbers of fixations for pu and upmutations, respectively (Figure
5)]. Because mutation-selection-drift predicts higher rpd for deleterious
pu mutations than for advantageous up changes (Akashi 1995), these
errors can diminish evidence for weak selection/fixation biases in rpd
comparisons between these mutations categories (i.e., reduce the abso-
lute values of estimated fitness effects). Atmutational equilibrium in the
absence of fixation biases, the estimation of the numbers of polymor-
phic mutations is accurate and rpd does not differ between pu and up
mutations. However, an increase in up mutation rate can cause an
elevated ratio of up to pu polymorphism and generate a signal similar
to fixation biases favoring up mutations if base composition is on the
approach to equilibrium under a new mutation rate.

TheSAandBTmethods showsimilar estimationbiases towardflat SFS
(Figure 3A and C). The SA method is more accurate but deviations
from actual values remain appreciable (Figure 4, Table S1). An important
source of error in SA is the assumption of identity of states at the within-
species MRCA and sibling species nodes (e.g.,m’ andms). In our neutral
simulation, approximately 5.2% of sites underwent fixations in ms-m’
lineage. Polymorphic sites in them population that experienced fixations
in the ms-m’ lineage violate SA inference assumptions. For example,
consider a site at which, in a sample of 10 sequences from m population,
two nucleotides G and T segregate with frequencies 0.9 and 0.1, respec-
tively. If the actual ancestral state atm’ is G as a consequence of a T/ G
fixation in the ms-m’ lineage, SA estimates a T / G polymorphic mu-
tation with frequency 0.9, rather than a G/ Tmutation with frequency
0.1. In this example, SA would overestimate high frequency up poly-
morphisms and underestimate low frequency pu polymorphisms.
Estimation error also occurs in the opposite direction (underestimation
of low frequency classes and overestimation of high frequency classes).
However, if the actual numbers of polymorphic mutations in high
frequency classes is much smaller than that in low frequency classes,
the overall bias will be toward flatter SFS as shown in Figure 3C. Similar
to the BT and STmethods, when the numbers of pu and up polymorphic
mutations differ, the mutation category showing the smaller number
experiences stronger inference biases. From these reasons, potential ef-
fects of the SA method on SFS comparisons are similar to BT.

The SA method shows slight overestimation of the total number of
polymorphic mutations (Figure S2, about 2�4% of the estimated
number of polymorphic mutations are overestimated). If the inferred

ancestral state differs from both segregating states, this method
“counts” two different polymorphic mutations at such a site. Thus,
fixations in the ms-m’ lineage can cause overestimation of the total
number of polymorphic mutations under SA. Consider a case similar
to the example above with G and T segregating at frequencies 0.9 and
0.1, respectively but in whichC is assigned as ancestral at thems node. If
the actual ancestral state atm’ is G as a consequence of a C/G fixation
in the ms-m’ lineage, the SA method estimates a C/ G polymorphic
mutation with frequency 0.9 and a C/Tmutation with frequency 0.1,
rather than a single G / T mutation with frequency 0.1. The magni-
tude of overestimation becomes larger for up than for pu mutations
with increasing GC bias because of the reduced ratio of up:pu poly-
morphism. In addition, overestimation increases with the numbers of
fixations in the lineage prior to the within-species MRCA.

The use of a single allele in the SA approach may lead to error in
estimatingnumbers offixations.Mutations on terminal lineages fall into
two classes: those that occurredprior to and those that occurred after the
MRCAof the population sample. The latter class are polymorphic in the
sample but are counted as fixations under SA. Thus, the numbers of
fixations are overestimated as a function of the depth of the MRCA
within the terminal lineage. In GC0 = 0.5, roughly 22% of the estimated
pu and up “fixations” under SA are actually polymorphic among the
10 sequences sampled from a population. Filtering all polymorphic sites
yields estimates of the numbers of fixed difference under SA similar to
actualfPFAP (data not shown). However, such an approach complicates
the interpretation of polymorphism/divergence analysis because differ-
ent sets of nucleotide sites are examined at short vs. long time scales.

Under neutral evolution (includingGC0 = 0.5), rpd estimation biases
are similar for pu and upmutations and we do not expect false positives
(Figure 5, Figure S2). However, in GC0 = 0.7, the average proportions of
post-MRCA changes are roughly 27% and 18% for pu and up, respec-
tively. Differences in the rate of accumulation of mutations on the pre-
and post-MRCA parts of the lineage among fitness classes can impact
rpd comparisons. As shown in Figure 5B, the magnitude of the over-
estimation of the number of fixations is much higher for pumutations
(roughly 23%) than for upmutations (roughly 10%). Estimation error is
much smaller for the numbers of polymorphic mutations than for
fixations (Figure S2). In total, rpd values for pu and up mutations are
about 18% and 5% underestimated, respectively, in GC0 = 0.7, which
diminishes rpd differences (and the signal of selection) when fitness
effects differ between mutation categories.

SA inference can also bias tests of equilibrium base composition
among lineages. Comparisons of the numbers of pu andup fixations can
be employed to infer the direction of base composition evolution
among lineages and the causes of non-stationary evolution (Akashi
et al. 2007). Greater overestimation of the numbers of pu fixations than
that of up causes a false signal of decline of the favored state (excess pu
fixations). The magnitude of inference error depends on the strength of
selection/fixation biases and can produce a pattern similar to expecta-
tions under a uniform reduction in fixation biases within a lineage
(Akashi et al. 2007).

In summary, the threemethods examined above can show consider-
able error in estimating the numbers and SFS of polymorphisms as well
as the numbers of fixations among closely related species. The SA
method shows the most accurate estimation of SFS among the three
methods but can suffer from error in the estimation of the total numbers
of polymorphic mutations and fixations. For estimation of the total
numbers of polymorphic mutations and fixations, the BTmethod is the
most accurate among these approaches.

The frequencies of polymorphic mutations themselves contain in-
formation about the identity of ancestral and derived states (Watterson
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and Guess 1977; Griffiths and Tavare 1998). Under neutral and weak
selection cases, substantially larger proportions of derived mutations
are expected to be found at low frequencies within a population (Fisher
1930; Wright 1969). We attempted to incorporate such information to
improve SFS estimation under BTW. We began by employing the
expected SFS under neutral equilibrium, SFSne, for weighting. Figures
3D, Figure 4 and Table S1 show that this method, BTWne, more accu-
rately estimates SFS than BT, ST, and SA. Estimation remains reliable
for some scenarios of weak selection on base composition where the
SFSne assumption is violated (Figure 4, Table S1, Figure S4B). The
numbers of polymorphic mutations are also estimated reliably under
BTWne (Figure S2) but the numbers of fixations are underestimated
because of PFAP (Figure 5). Fixation numbers are close to actualfPFAP
values but are underestimated because the AWP approach does not
adjust for multiple fixations (Matsumoto et al. 2015).

Non-stationary scenarios
We examined the robustness of the BTWne method in non-neutral,
non-stationary scenarios of base composition evolution. In the fixation
bias change scenario with GC0 = 0.7, the BTWne method accurately
estimates the SFS (Figure 6, Table S2) and numbers of polymorphic
mutations (Figure S5). These results suggest robustness of weighting by
SFSne in at least some scenarios in which pu and up mutations are not
neutral and base composition is not stationary. Similar to the results for
stationary scenarios, BT, ST and SAmethods did not show the accurate
estimation of SFS (Table S3). We also found that the numbers of
fixations show PFAP and AWP underestimation under BTWne (Figure
S6), which is also consistent with the results for stationary scenarios.

To test the robustness of the BTW method to demographic
violations of the standard neutral model, we analyzed sequences
simulated under four demographic change scenarios. These scenar-
ios result in substantial departures from SFSne (Figure S7); demA and
B show a flatter SFS whereas demE and F show excesses of rare
mutations. Results for two other scenarios (demC and D) that
showed smaller departures from SFSne are given in the supplemen-
tary materials (Figure S7; Table S2).

BTWne reliability varied considerably among the tested demo-
graphic scenarios: SFS estimation was accurate for demA and demE
but was unreliable for demB and demF (Figure 6, Table S2). How-
ever, estimation of the total numbers of polymorphic mutations is
accurate for all four scenarios (Figure S8). The estimated numbers of
fixations in the ms-m’ lineage under BTWne is also very close to
actualfPFAP (Figure S9).

We testedwhether ancestral inference error for demB and demF can
be attributed mainly to incorrect SFS weighting. If this is the case, then
employing an accurate SFS for weighting (without changing any aspects
of the upstream ancestral state inference) should improve estimation
accuracy. Table S4 shows marked increases in the accuracy of SFS
estimation for demB and demF when the average actual SFS’s among
replicates is employed as the “empirical” SFS (BTWemp).

Strongly biased base composition scenarios
In stronger selection (or fixation bias) scenarios, actual SFS show strong
departures from SFSne (Figure S4C, E and F). BTWne can accurately
estimate the SFS in some of these scenarios (Table S5). The total num-
bers of polymorphic mutations are accurately estimated (Figure S10),
and fixations are similar to actualfPFAP (Figure S11) in all of the con-
sidered scenarios. However, similar to the demographic change scenar-
ios, strong departures from SFSne can result in considerable reductions
in the accuracy of SFS estimation under BTWne (e.g., ty-t lineage in the
fixation bias change scenario in Table S5). Again, incorrect SFS weight-
ing appears to be themain issue; BTWemp gives accurate SFS estimation
for the strong and/or non-equilibrium base composition bias scenarios
(Table S4).

Iterative BTWest

The BTWne method shows robustness to moderate differences be-
tween the assumed and actual SFS but stronger departures can de-
grade the accuracy of ancestral inference. Because weighting by
realistic SFS (BTWemp) can yield accurate inference in such cases,
iterative SFS estimation may be a promising approach for ancestral
inference when SFSne may be strongly violated. To test this notion,

Figure 6 Performance of the BTWne methods for
estimating the SFS of polymorphic mutations in
non-stationary GC content scenarios. x2 good-
ness of fit statistics were calculated using actual
vs. estimated numbers of polymorphic mutations
for each mutation category. The gray scale and
cell values give the numbers of replicates showing
“poor” and “good” fits between observed and
expected values. The procedure of x2 calculation
and the meaning of the gray scale and the num-
ber inside each cell are described in the Figure 4
legend. The numbers of polymorphic mutations in
each scenario and mutation category is shown in
Table S2. The SFS of the focused population was
estimated under the BTWne method. The simula-
tion assumed fixation bias change scenario with
GC0 = 0.7 and four demographic change scenar-
ios, demA, demB, demE and demF. Population
sampling and ancestral inference were replicated
100 times.
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we performed ancestral inference followed by multiple rounds of
SFS weighting. The first round employed SFSne for weighting and
the resulting SFS will be referred to as SFSest1. The latter was
employed to weight a second round of ancestral inference and this
process was repeated for five rounds (i.e., the last round employed
SFSest4 for weighting). Iterative weighting was tested with data from
three scenarios, demB, demF and fixation bias change scenario with
GC0 = 0.9. From each scenario, we choose a single replicate that
shows a large departure between actual and estimated SFS under
BTWne. Iterative BTWest allows accurate estimation of the numbers
of polymorphic mutations and SFS across mutation categories in all
of the examined scenarios and appears to provide a feasible method
to considerably enhance the accuracy of ancestral inference (Figure
7). In the cases examined, the fit between actual and estimated SFS
improved considerably in the second round of estimation (using
BTWest1) and largely converged within a few rounds (Figure 7).
For dem B and demF, we also applied the iterative BTWest method

for replicates and confirmed a large improvement in the accuracy of
SFS estimation compared with BTWne inference (Table S2 and S6).

Although the frequencies of polymorphism are informative for ances-
tral state inference, assumingaparticularSFSmaybias reconstructions.We
tested how the shape of the starting SFS (assumed SFS in the first round)
affects the reliability of iterative BTWest. We employed SFSne, uniform
frequencies and excess common SFSec (SFSne was flipped on the vertical
axis) as starting SFS for three independent iterative BTWest processes for
data from the stationary scenario with GC0 = 0.5. SFSne as the starting SFS
is a realistic assumption in this case, but the other starting SFS differ
considerably from the actual SFS. The iterative BTWest analysis accurately
estimated the SFS with all three starting SFS (Table S7). Estimated
SFS under iterative BTWest can converge to the accurate values despite
inaccuracies in the assumed SFS in the first round (see also Table S6).

Our main simulation scenarios did not included biasedmutation or
genetic linkagebutwe showreliableSFS estimation forpu,upandpp+uu
mutations in such cases (Table S8 and S9).

Figure 7 Performance of the iterative BTWest

method for estimating the SFS of polymorphic
mutations in non-stationary GC content scenarios.
SFS of the t population in fixation bias change
scenario with GC0 = 0.9 and m population in
demB and demF were estimated under the itera-
tive BTWest method, and x2 goodness of fit sta-
tistics were calculated using actual vs. estimated
numbers of polymorphic mutations for each mu-
tation category. The procedure for x2 calculation
is described in the Figure 4 legend. This figure
shows results for a single replicate that showed
relatively large x2 value in the BTWne analysis.
The estimation under iterative BTWest was re-
peated for six rounds (the first round was BTWne

and the following five were BTWest using the es-
timated SFS of the previous round). The cell val-
ues show the calculated x2 value and the shaded
cell means that the x2 # 3.5 which is the criteria of
low x2 value. The results of all 100 replicates for
demB and demF are shown in Table S5.
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Ancestral polymorphism
As we noted above in the discussion of PFAP, shared ancestral poly-
morphism violates the assumptions of the TRMFT approach and can
lead to bias/error in ancestral inference. At least three cases can be
problematic: 1) parallel fixations of non-ancestral states (PFAP), 2)
maintenance of ancestral polymorphism among sister lineages, and 3)
fixation of the non-ancestral state in one lineage and maintenance of
both states as polymorphism in the other. Cases 2 and 3 affect poly-
morphism analysis but in our simulations, polymorphic mutations that
originated in an ancestral population and remain shared in sister species
are rare (e.g., about 1% of all polymorphic mutations are shared be-
tween the m and s populations in the stationary scenario with GC0 =
0.5). To test the effect of shared ancestral polymorphism on the accu-
racy of ancestral inference (the input tree is incorrect for such sites), we
examined the performance of the BTWne method for data simulated
under a tree with shorter branch lengths (2,000, 1,000 and 100 gener-
ations) for the ms-m and ms-s lineages (all other branch lengths are
unchanged). These branch lengths result in about 5%, 10% and 25%
shared polymorphism, respectively. Among these scenarios, the reli-
ability of BTWne inference is high at 5 and 10% shared polymorphism
but decreased at 25% (Table S10). Importantly, filtering sites showing
the same polymorphic states in them and s populations (i.e., candidates
for shared ancestral polymorphism) does not increase the estimation
reliability (Table S11) perhaps because the 3rd class of errors remain
unfiltered.

Ancestral inference under maximum parsimony
Weshowed thatpreviously employedancestral inferenceapproaches for
polymorphism data, BT, ST and SA, can yield significant estimation
error for the numbers of polymorphicmutations and fixations aswell as
the SFS of segregating sites (Figures 3-5, Figure S2, Table S1, S3).
Maximum parsimony (MP) was not examined in detail here because
the approach is known to suffer from large estimation error in scenarios
with unequal nucleotide transition rates (Collins et al. 1994; Perna and
Kocher 1995; Eyre-Walker 1998; Galtier and Boursot 2000; Alvarez-
Valin et al. 2004; Akashi et al. 2007; Hernandez et al. 2007; Matsumoto
et al. 2015). We emulated maximum parsimony by combining a Jukes-
Cantor transition rate matrix (Jukes and Cantor 1969) and single best
reconstruction (Matsumoto et al. 2015) and inferred polymorphisms
and fixations in the stationary scenario with GC0 = 0.7 under MP.
As expected, MP shows considerable error in estimating the numbers
of fixations at moderate base composition bias even among closely
related lineages (Figure S12A) and we believe the approach should
not be employed as a sole or primary ancestral inference method
(Matsumoto et al. 2015). Because the underestimation is much larger for
advantageous (up) than deleterious (pu) mutations, this bias causes a
false signal of non-stationary base composition evolution (Matsumoto
et al. 2015). For SFS estimation, maximum parsimony results in un-
derestimation and overestimation of low and high frequency classes,
respectively. The biases are similar in direction, but somewhat
lower in magnitude, than for BT inference (Table S12). The numbers
of polymorphic mutations are estimated accurately (Figure S12B).
rpd is 23% overestimated for pu mutations and 41% overestimated
for up mutations. Because rpd decreases monotonically with Nes, rpd
tests will underestimate the advantageous effect of up mutations
and overestimate the deleterious effects of pu changes. In summary,
for comparisons of pu and up mutations, maximum parsimony ex-
hibits moderate bias in the SFS estimation but considerable biases in
estimating the number of fixations. The latter biases are expected to
strongly impact data analyses.

Sample size and SFS estimation
Finally, we show how sequence length (and the number of polymorphic
sites) affects the reliability of the inference of polymorphisms. In the
above analysis, we used 100,000 nucleotide sites. Among these nucle-
otide sites, about 4,000 are polymorphic among 10 sequences sampled
from m population in GC0 = 0.5. We also conducted analyses using
subsets of this data (10,000 and 1,000 sites) for the stationary scenario
with GC0 = 0.5. We analyzed 10,000 and 1,000 sites from the same
sequences used in the above analysis and estimated the SFS under the
BTWnewith 100 replications. Our result shows that even for the smaller
data set, the estimated SFS is quite accurate. With 10,000 sites, all
100 replicates showed close matching between estimated and actual
SFS for pu, up and pp+uu mutations. With 1,000 sites, the very small
numbers of polymorphic mutations precluded goodness of fit evalua-
tion but the estimated SFS’s are close to actual (Table S13). However, we
have to note that the accurate estimation of SFS with 1,000 sites may
not be a general result. Complexity of the evolutionary scenario or the
number of analyzed species can affect the number of sites required for
the accurate estimation. In addition, if bootstrap analysis is conducted
to calculate the confidence interval of SFS, ancestral inference with
small number of sites can show highly variable result across replicates
(Matsumoto et al. 2015) which makes the confidence interval large.

DISCUSSION
The rapid expansion of genome-scale polymorphismdatahas generated
a need for methods to infer ancestral and derived states for within-
species variation. Numerous studies have demonstrated the impact of
nucleotide transitionmodel on the accuracy of TRMFT-based ancestral
inference (e.g., Collins et al. 1994, Perna and Kocher 1995, Eyre-Walker
1998, Galtier and Boursot 2000, Alvarez-Valin et al. 2004, Akashi et al.
2007, Matsumoto et al. 2015). However, for genomes undergoing re-
combination, small genetic regions, even individual sites, can have
different genealogies in within-species samples. In such cases, the re-
quirement for a single phylogeny is an important limitation of likeli-
hood-based approaches to ancestral inference. Because region-specific
gene trees may be difficult to reconstruct accurately (especially when
the regions are small), we have explored approximate approaches to
infer fixations and polymorphisms among closely related lineages.

Several previous studies have employed likelihood-based estimation
methods using ancestral inference that incorporate population genetic
and phylogenetic models to estimate the number of fixations and
polymorphic mutations and their SFS. However, most such studies
have not employed models (i.e., transition rate matrices) that can in-
corporate mutation rate biases and differences in fixation probabilities
of mutations caused by selection or biased gene conversion. For exam-
ple, the method proposed in Wilson et al. (2011) employs both pop-
ulation genetics theory (expected stationary SFS) and phylogenetic
ancestral inference based on a transition rate matrix to calculate like-
lihoods of states at ancestral nodes. Their main focus was detection of
adaptive protein evolution and fixation biases are considered only for
non-synonymous changes; synonymous changes are assumed to evolve
under the HKY85 model (Hasegawa et al. 1985) which has limited
applicability for base composition evolution scenarios including those
explored here (Matsumoto et al. 2015).

More recently, Keightley et al. (2016) developed a method to
estimate the unfolded SFS. Their method estimates the expected num-
ber of nucleotide fixations per site, K, that can explain the observed
polymorphism in a focal species. The estimated K is used to estimate
the likelihood of ancestral states at each site. The method can assign
different K for transition and transversion mutations. However, fitness

1766 | T. Matsumoto and H. Akashi



effects/fixation biases for different mutation categories (e.g., up, pu and
pp+uu) are not considered and the number of outgroups for the analysis
is limited to two. Therefore, this method may also be limited for studying
base composition evolution. Variation in fixation probabilities across dif-
ferent mutation categories and non-stationary evolution among multiple
lineages are known aspects of synonymous site evolution, and we have
focused on ancestral reconstruction approaches that can account for such
phenomena. The Keightley et al. (2016) method estimates SFS for pooled
mutations (pooled SFS) and we compared it with the estimates under
BTW. Table S14 shows that both methods estimate the pooled SFS with
high accuracy in several evolutionary scenarios. However, in four of five
scenarios we considered, BTW showed slightly, but significantly, more
accurate estimation than the Keightley et al. (2016) method.

The three approaches used in previous studies (ST, SA, and BT) can
employnucleotide transitionmodels that incorporatefixationbiases and
non-homogeneous evolution (e.g., the GTR-NHb). However, our re-
sults show that these implementations do not allow reliable inference of
fixations and polymorphisms among closely related species. In the BT
method, the estimation of the total numbers of polymorphic mutations
is accurate but that of the SFS is biased toward flat distributions. The ST
method showed the largest error among the three methods. The esti-
mated SFS showed strong under- and over-estimation of the number of
mutations in high and low frequency class, respectively. In addition, the
estimated total number of polymorphic mutations was also inaccurate.
The SA method showed the smallest error in the estimation of the SFS
among the three methods. However, this method overestimates the
number of mutations in high frequency class and showed large estima-
tion error for the total numbers of polymorphic mutations and fixa-
tions. The BTW method proposed here allows accurate inference of
polymorphisms under a range of scenarios of base composition evolu-
tion. The iterative BTWest approach is more broadly applicable and
gave accurate estimation in all scenarios examined in this study in-
cluding cases where actual SFS showed large departures from SFSne.

In contrast to the inference of polymorphisms, fixation estimation
shows error even under BTW. This is because the ancestral inference
methods using nucleotide transition rate matrices do not consider
parallel fixations of ancestral polymorphism (PFAP). The expected
extent of PFAP under neutral evolution can be calculated given in-
formation about mutation rate and ancestral population size and the
effect on particular data sets must be examined on a case by case basis.
Inference errors for fixations and polymorphisms in the previous three
methods and in BTW may have critical impacts on inferences of
selectionandbiasedgene conversion.Wehave found that themagnitude
and direction of biases depend on the method as well as actual
evolutionary scenarios. The possibility that inference biases canproduce
patterns thatmimicbiological scenarios of interest (suchas relationships
betweenapparentstrengthoffixationbiases andGCcontent) shouldbea
carefully considered in data analyses.

Recommendation for data analysis
Our simulation results suggest that BTW and iterative BTWest methods
can provide reliable inference of polymorphisms across a range of
evolutionary scenarios. For data analysis, data pooling is an important
aspect that requires balancing sample size and fit to model assump-
tions. Larger sample sizes are necessary when employing complex
substitution models but the methods assume homogeneity (i.e.,
shared parameter values) across sites. In many cases, data partition-
ing by GC content, genomic location (e.g., autosome vs. sex chromo-
somes, euchromatin vs. heterochromatin), expression level, etc may
be warranted and robustness of results to the binning/pooling strat-
egy should be tested.

BTapproaches assumenosharedpolymorphisms amongspecies but
the approach shows some robustness to this assumption. High propor-
tions of shared polymorphisms decrease the accuracy of the estimation
of SFS under the BTWmethod, however (Table S7) and samples should
be screened for sharedpolymorphismbefore applying these approaches.

Overall, the iterative BTWest method should have broad applicabil-
ity and is our recommended approach. Although the demographic
change scenarios considered above are relatively simple, iterative
BTWest converged to accurate estimations within a small number of
rounds in all the scenarios we considered. Because the computational
cost is small, we recommend 5�10 rounds of iteration for data analysis.
In general, employing information from allele frequencies in ancestral
state inference should allow more reliable inference if the assumed SFS
is correct. However, if the assumed SFS differs from the actual pattern,
then this approach could, in principle, lead to estimation biases. Iter-
ative BTWest allows a test of such biases; for a given data set, iterative
SFS estimation can be conducted with a range of starting SFS (uniform,
equilibrium neutral, excess rare, etc). The approaches should converge
to a similar SFS if the inference is accurate. In this study, we found this
to be the case for a range of actual SFS (Table S5, S6). These results
support that iterative BTWest is a reliable and robustmethod that allows
accurate estimation of a wide range of SFS.

Future improvement of ancestral inference for
polymorphism data
Our findings emphasize that ancestral reconstruction methods must
be considered carefully when analyzing within and between species
genetic variation even among closely related species. Prevalent biases
in some ancestral reconstruction approaches that can give results that
mimic biological scenarios of interest are concerning but the ap-
proximate approach, BTW, appears to reliably infer polymorphism
and SFS data under a broad range of conditions. However, we note
that all of the scenarios that we simulated were at least roughly
consistent with the input tree and nucleotide transition model
employed for ancestral inference (a GTRmodel with lineage-specific
base composition and rate parameters). Considerable error in in-
ferring polymorphism and fixation patterns can occurwhen assump-
tions of the TRMFT approach are violated (especially effects of
ancestral polymorphism). Further development of population ge-
netic approaches for ancestral inference may be necessary to over-
come such issues.
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