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ABSTRACT

Ribosome biogenesis, a central and essential cellu-
lar process, occurs through sequential association
and mutual co-folding of protein–RNA constituents
in a well-defined assembly pathway. Here, we con-
struct a network of co-evolving nucleotide/amino
acid residues within the ribosome and demonstrate
that assembly constraints are strong predictors of
co-evolutionary patterns. Predictors of co-evolution
include a wide spectrum of structural reconstitution
events, such as cooperativity phenomenon, protein-
induced rRNA reconstitutions, molecular packing
of different rRNA domains, protein–rRNA recogni-
tion, etc. A correlation between folding rate of small
globular proteins and their topological features is
known. We have introduced an analogous topolog-
ical characteristic for co-evolutionary network of ri-
bosome, which allows us to differentiate between
rRNA regions subjected to rapid reconstitutions from
those hindered by kinetic traps. Furthermore, co-
evolutionary patterns provide a biological basis for
deleterious mutation sites and further allow pre-
diction of potential antibiotic targeting sites. Un-
derstanding assembly pathways of multicomponent
macromolecules remains a key challenge in bio-
physics. Our study provides a ‘proof of concept’
that directly relates co-evolution to biophysical inter-
actions during multicomponent assembly and sug-
gests predictive power to identify candidates for crit-
ical functional interactions as well as for assembly-
blocking antibiotic target sites.

INTRODUCTION

Macromolecular complexes are the functional units of most
core cellular processes (1) such as transcription, trans-

lation, protein degradation, signal transduction. Conse-
quently, biogenesis pathways of these molecular nanoma-
chines are central to cellular metabolism. A comprehensive
biophysical understanding of how the different or identical
subunits co-assemble into complex structures is, therefore,
a central issue in biology.

The components of a macromolecular complex self-
assemble into a heterogeneous structure through a com-
plex series of molecular recognitions and structural rear-
rangements. Despite their biological importance, such pro-
cesses have proven difficult to resolve (2,3). Individual sub-
units can self-assemble into a complex in numerous possi-
ble paths (3–5). For instance, 21 monomers of the bacterial
small ribosomal subunit (SSU) can assemble through mil-
lions of potential intermediate structures (3). However, only
a few energetically favorable intermediates make a measur-
able contribution to the assembly (5,6). This indicates that
biological macromolecules involve orchestrated physical in-
teractions among the constituents (3). An ordered assem-
bly is, therefore, fundamental to the biogenesis of macro-
molecular complexes and the assembly order is generally
conserved in evolution (6,7).

Conserved assembly pathways are generally associated
with conserved structures and sequences of the constituent
monomers. The bacterial SSU, for which assembly mecha-
nisms have been investigated for decades, is composed of a
16S rRNA and about 20 proteins (S2, S3, . . . , S21). The 16S
rRNA is remarkably conserved in sequence (8,9), secondary
structural elements and 3D structure (10); ribosomal pro-
teins also exhibit highly conserved 3D architecture (11).
Simultaneous conservation of assembly pathway, sequence
and structure allow us to speculate that ordered assembly
pathways have emerged through mutual evolutionary read-
justments among the constituents (3). Co-evolution refers
to coordinated evolutionary changes between two or more
evolutionary units, such as amino acid positions within pro-
teins, phenotypic characteristics etc. (12,13). Molecular co-
evolution is generally observed among physically interact-
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ing proteins, interacting domains of a protein, proximal
amino acids of the same or two interacting proteins (12–16)
and even among the constituents of multicomponent com-
plexes (17,18). Here, we seek to address whether patterns of
co-evolution among the components of a complex are cor-
related with the biophysical mechanism (thermodynamics
and kinetics) of its self-assembly process. This approach re-
quires a macromolecular complex for which description of
structural reconstitution events are known in molecular de-
tail. The bacterial SSU is selected for this purpose.

The protein–rRNA constituents of the bacterial SSU can
be efficiently assembled from purified components to the
functional native structure in vitro (19). This has facilitated
visualization of ribosome assembly at the molecular level.
Ribosome assembly is organized in three independently
folding domains of the 16 rRNA: 5′ domain, central domain
and 3′ domain (20,21). The assembly nucleates concurrently
from multiple self-folding sits of the 16S rRNA (22) and
proceeds in a 5′-to-3′ direction (23). Protein binding follows
a specific hierarchy (24,25), which depends on the tempo-
ral order of binding site availability (25,26). Before the ini-
tiation of protein binding, 16S rRNA is partially folded,
having most of its secondary structural elements in place.
Proteins rapidly associate with this partially folded rRNA,
forming initial encounter complexes that lead to mutual co-
folding of the two molecular species (22). This co-folding re-
organizes the local rRNA conformation and progresses to-
ward the native state. Finally, the three independently fold-
ing domains pack together, generating the functional APE
sites.

Here, we take advantage of the extensive knowledge on
ribosome structure and assembly mechanism, along with
the wide-ranging bacterial genomic data to show that char-
acteristic patterns of co-evolution are driven by the ther-
modynamics and kinetic constraints of ribosome assem-
bly. We develop efficient computational methods and met-
rics, which allow us to extract functionally relevant infor-
mation from co-evolutionary signals. Directly relating co-
evolution to biophysical interactions and thermodynamic
and kinetic constraints of folding reveals the underlying
bases of known deleterious mutations and antibiotic bind-
ing sites. Our analysis places many previously documented
experimental findings about the system into evolutionary
context and it also provides predictions for further empiri-
cal studies to deepen our understanding of the structure and
biophysics of the small ribosomal subunit.

MATERIALS AND METHODS

Dataset

Because ribosomal proteins and RNA (8–11) are highly
conserved, we have collected a diverse set of ribosomal pro-
tein and 16S rRNA sequences from 280 species represent-
ing all 18 phyla of bacterial superkingdom. These species
were selected to represent the sequence diversity of the en-
tire phylum (27). Ribosomal protein and RNA sequences
are collected from NCBI database (www.ncbi.nlm.nih.gov/)
and Comparative RNA Website (28) respectively. A dataset
of three high-resolution X-ray crystallographic structures
and one low-resolution Cryo-Electron Microscopic struc-
ture of Escherichia coli small ribosomal subunit are used for

structural analysis. The sequence and structure datasets are
provided in Supplementary Dataset.

Evolutionary analysis

A number of computational methods have been developed
in the last decade to identify co-evolving residue pairs (12).
The pioneering approach of McBASE (29) was followed by
the CAPS method (30), which has successfully predicted
protein interactions and 3D contacts. Both of these meth-
ods identify pattern of substitutions between site pairs and
estimate their similarity using a pre-calculated amino-acid
substitution matrix. Thus, these approaches are only ap-
plicable to protein sequences. Ancestral sequence predic-
tion based methods have been proven accurate in predict-
ing both protein and RNA tertiary contacts among closely
related sequences (31,32). However, the performance of an-
cestral reconstitution based approaches in large-scale anal-
ysis remains to be tested (12). We have employed Mutual
Information (MI) approach in our work, because this ap-
proach is applicable to a large and diverse dataset (33–37)
and has been proven sensitive for inferring both protein and
RNA 3D contacts (38,39), as well as contacts between pro-
tein and RNA (38,40). MI score between two residues a and
b, located at i-th and j-th positions of the alignment are cal-
culated as follows:

MI(i, j ) =
∑
a,b

P(ai , b j ) × log
(

P(ai , b j )
P(ai ) × P(b j )

)
(1)

where P(ai , b j ) is the joint probability distribution and
P(ai ) and P(b j ) are the marginal probability distributions
of residues a and b, located at i-th and j-th positions of the
alignment respectively. Sole MI values are associated with
false-positives, as we tend to identify the co-evolving pairs.
Firstly, modeling studies showed that alignments should
contain at least 125 sequences before Mutual Informa-
tion ‘signal’ becomes apparent over random noise (37).
Secondly, position pairs might have elevated MI due to
the phylogenetic relationships of the organisms represented
in the alignment (33). This may be minimized by exclud-
ing highly similar sequences from closely related species
from the alignment (37,41). We have used a large sequence
dataset of 280 diverse species that keeps the first two sources
of false positives at minimum. Finally, positions with higher
variability, or entropy, will tend to have higher levels of both
random and non-random MI than positions of lower en-
tropy (37,42). To counter this effect, each site pair score is
weighed against the average score of its constituting sites;
the Row-Column-Weighed score (34), termed as the rcwMI
is defined as:

rcwMI(i, j ) = Mi j

(MIi. + MI. j − 2MIi j )/(n − 1)
(2)

where MIi. and MI.j are the summation of the MI val-
ues of residues i and j, respectively, to all other residues
in the MSA. Mi j is the MI between residues i and j. Thus,
rcwMI filtering is a simultaneous bi-dimensional optimiza-
tion, which weights an existing matrix to identify the strong
signals. A high MI indicates strong dependency between
two sites, while a high rcwMI score indicates the pairs with-
out the phylogenetic noise. To optimize between these two
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parameters (Extended Materials and Methods section), we
have chosen only those pairs as co-evolving which simul-
taneously satisfy the two conditions (i) The MI values ex-
ceed the 99.9% confidence interval of the entire MI distri-
bution spectrum and (ii) The rcwMI values exceed the 90%
confidence interval of the entire rcwMI distribution spec-
trum. This filtering is particularly important for finding co-
evolving nucleotide-amino acid pairs. While the same MI-
treatment is applied to both protein and rRNA, random MI
scores due to one or both invariable sites are the principle
source of error (40). This is minimized through two steps.
First, we use an alignment of a large number of diverse se-
quences in order to reduce the probability of random low
MI due to invariable sites (<1%) (40). Second, we use only
the top hits (exceeding 99.9% confidence interval) from the
MI spectrum. Thus, our methodology incorporates only the
correlated fashion of mutations to identify the co-evolving
residue positions (no other constraints, such as distance be-
tween residue pairs in the 3D structure, are imposed). The
CAPS method (30) is also used for protein sequence anal-
ysis, for validating the MI-based predictions. All the co-
evolving pairs are available in the Supplementary Data and
a statistics of the co-evolving pairs is provided in Supple-
mentary Materials section 3.1.

Network construction and analysis

Co-evolving residue pairs are transformed into an undi-
rected, unweighted network, in which each node represents
a residue position (amino acid/nucleotide) and two nodes
are connected if they are co-evolving.

Network analysis at local-level

Two topological parameters are computed: degree and clus-
tering coefficient. Degree or node connectivity is defined as
the number of nodes adjacent to the node of interest. Clus-
tering Coefficient (Cn) of a node n of an undirected network
is the measurement of its cliquishness. High clustering co-
efficient of a node indicates a locally dense region of the
network.

Network analysis at global-level

Assortative mixing and coefficient of assortativity. A net-
work shows assortative mixing if the high degree nodes in
the network tend to be connected with other high-degree
nodes. This is quantified in the coefficient of assortativity
(43):

r =
M−1 ∑

i
ji ki −

[
M−1 ∑

i
0.5( ji + ki )

]2

M−1
∑

i
0.5

(
j2
i + k2

i

) −
[

M−1
∑

i
0.5( ji + ki )

]2 (3)

Here, ji and ki are the degrees of the nodes at either ends of
the ith edge and M is the total number of edges.

Co-evolution order. For a protein structure, contact order
is defined as the average primary separation between two
physically contacting amino acids (44). We have applied an

analogous measure, termed ‘Co-Evolution Order’ (CEO),
which measures the average primary chain separation of the
two co-evolving residues. It is defined as:

CEO =
∑
i> j

�(i, j )|Si − Sj |/nc (4)

where nc is the total number of CEPs, Si and Sj are the se-
quence position of the residues i and j, and �(i, j) selects the
residues (i and j) that are in contact.

Module analysis. Module analysis locates the densely con-
nected sub-networks exhibiting modular organization and
finds whether it significantly differs (Z-statistics) from any
random sample of nodes of the background network. Mod-
ule analysis is performed by ClusterONE (45).

Structure analysis

Protein–protein and protein–rRNA interfaces and molecular
contacts. An amino acid residue is defined as an interface
residue if it loses >1 Å2 of its accessible surface area when
passing from an uncomplexed state (free protein) to a com-
plexed state (RNA-bound) (46). The same criterion is used
to identify the rRNA nucleotides that physically recognize a
protein. Surface Racer program (47) is used to calculate the
surface areas with 1.4 Å probe radius. Intermolecular van
der Waals contacts are considered for all atoms pairs sep-
arated by ≤5.0 Å distance. Hydrogen bonds are identified
for D–A distance ≤3.35 Å, and D–H–A angle to be within
90–180◦, where D stands for the donor group and A for the
acceptor group.

All the statistical analyses were performed using PAST
statistical software package (48). Molecular graphics were
prepared using PyMOL Molecular Graphics System.

A detailed version of the Materials and Methods is pro-
vided as Extended Materials and Methods.

RESULTS AND DISCUSSION

The cooperativity phenomenon

Molecular basis of cooperativity in macromolecular assem-
bly. At each stage of the assembly hierarchy, partially
folded rRNA segments recognize groups of proteins and
the assembled protein–rRNA components mutually co-fold
(22,49). The pre-binding of early binder proteins and the
rRNA structural reconstitutions they induce simultane-
ously enable recognition of the next set of proteins. This
molecular event explains the increase in rRNA-binding
affinity and accelerated binding rate of late binder pro-
teins that follows the association of early binders (24,25).
Thus, the assembling protein–rRNA components are en-
ergetically coupled. The coupling free energy (�Gcoupling)
arises either from the direct physical interactions between
two proteins, or through protein-mediated conformational
changes of 16S rRNA structure or both (3). �Gcoupling en-
sures that an intermediate sub-complex is more stable than
its individual components, and this stability gain drives the
assembly forward (3). This phenomenon is termed ‘cooper-
ativity’ and it is relevant in other aspects of conformational
transitions, such as protein folding (50) and allosterism (51).
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Characteristic patterns of co-evolution among cooperative
protein pairs. The thermodynamic order of protein bind-
ing in SSU assembly was initially determined by No-
mura (24) using a series of equilibrium reconstitution ex-
periments and is summarized in the classic Nomura As-
sembly Map (Figure 1A). Energetic coupling among the
cooperative protein pairs acts as a constraint of ribo-
some assembly (constraint at structure space). We investi-
gated whether cooperative protein pairs are associated with
stronger co-evolutionary constraints compared to any ran-
dom pair (constraint at sequence space). We identify co-
evolving amino acid/nucleotide pairs (CEPs) within the
same molecules (intra-protein and intra-rRNA) and among
different molecules (inter-protein and protein–rRNA) con-
stituting the SSU. We define and measure three categories
of CEPs among all possible protein pairs: (i) direct: individ-
ual residues of two proteins co-evolve; (ii) indirect: amino
acid residues of two proteins co-evolve with the same rRNA
nucleotide (structural reorganization induced by the early
binder likely propagates through the rRNA); and (iii) third-
party: rRNA nucleotides that physically recognize the two
cooperative proteins co-evolve with each-other. We have in-
vestigated whether the amino acid pairs maintaining in-
direct co-evolutionary relationships also exhibit transitive
co-evolution (if A co-evolves with both B and C, then B
and C also co-evolve) with each other. Although the ex-
pected value under a null hypothesis of independence is
3.66%, almost 29.9% of amino acid pairs show transitive
co-evolution. A visual illustration of the three categories of
CEPs is provided in Figure 2 for S7–S13 cooperative pair.
Since �Gcoupling arises both from protein–protein physical
contacts and protein induced conformational rearrange-
ments of the rRNA, the three categories of CEPs support
that both the protein and rRNA segments are constrained
by energetic coupling.

Cooperative protein pairs exhibit strong co-evolutionary pref-
erence. Next, we computed probabilities of CEPs between
protein pairs and converted the probability values into
entropy-like functions: termed co-evolutionary preference
score (PS) (Supplementary Materials section 3.2.1). Con-
sidering individual proteins as nodes and PS scores as their
edge-weights, we construct an edge-weighted network and
project it onto the modified Nomura Assembly Map (Fig-
ure 1B). Cooperative protein pairs show a clear signal of
elevated rates of co-evolution (high PS values compared to
random protein pairs, Permutation Mann–Whitney (MW)
U-test, P < 10−9). This result is consistent with the obser-
vation of strong structural constraints between such protein
pairs.

Strength of co-evolutionary preference depends on the molec-
ular nature of energetic coupling. The rRNA structural re-
constitutions induced by primary binders (primary proteins
binding independently with 16S rRNA) assist the subse-
quent association of secondary binders (secondary proteins
depend on primary binders); but these reconstitutions gen-
erally dampen prior to tertiary binding (those depend on
primary and secondary binders). For instance, S15 protein
rearranges the relative orientations of a set of rRNA he-
lices (H20, H21, H22 and H23) at the central domain, en-

abling the subsequent association of secondary S6–S18 het-
erodimer. However, these rRNA helices do not experience
further significant reconstitutions during the succeeding
binding of tertiary S11 protein (52). Therefore, the primary–
tertiary indirect cooperativity mostly emerges from protein–
protein physical interactions, which are essential to drive
the assembly forward. This explains our observation that
18 out of 23 primary-tertiary indirect cooperativities are
also associated with strong PS compared to random non-
cooperative pair. However, the PS values among directly co-
operative pairs exhibit slight elevation compared to those of
the indirectly cooperative pairs (P < 0.05). When we include
the indirectly cooperative proteins into the dataset and com-
pare their PS scores with any random protein pair (Permu-
tation MW U-test), the probability of no association de-
creases to P < 10−16.

Proteins assisting inter-domain packing exhibit strong co-
evolutionary preference. Each 16S rRNA domain can as-
semble independently (20,21) and their accurate fabrica-
tion is essential for biological functionality. This fabrica-
tion is achieved by both intra-rRNA molecular packing
and physical interactions among proteins from different do-
mains (53). Proteins involved in inter-domain fabrication
(e.g. S7–S11, S5–S3, S8–S12, etc.) do not alter the binding
kinetics of each other (25) but they appear at the thermody-
namic dependency map (24). Significantly elevated PS val-
ues between the proteins involved in inter-domain fabrica-
tion compared to random inter-domain protein pairs (P <
10−4) indicates evolutionary conservation of these protein–
protein interfaces.

Co-evolutionary preference can capture distantly placed co-
operative protein pairs. Direct physical interaction is not
the only molecular mechanism for energetic coupling, since
many proteins maintain their cooperative relationships by
reconstituting the rRNA conformation. For example, S15
induces a structural rearrangement at the 3-Way-Junction
of the central domain, enabling the subsequent association
of S6–S18 heterodimer about 35 Å away from S15 (52).
Long distance, as well as steric, constraints are therefore
crucial in ribosome assembly. To test for CEPs that are mu-
tually dependent, but structurally remote, we limited com-
parisons to those that satisfy two criteria: (i) protein pairs
are at least 10 Å apart from one another and (ii) CEPs are
separated by minimum 30 Å in the 3D structure. We found
strong associations (P < 10−4) between assembly interac-
tion and co-evolution despite a considerable reduction in
sample size. This approach revealed compelling candidates
for cooperative pairs that do not physically interact; the can-
didates include the recently reported S19–S10 cooperative
pair (25).

The 41 remaining co-evolutionary relationships are gen-
erally very weak and they serve the purpose of ‘background
data’. However, among these 41 pairs, five pairs are asso-
ciated with strong co-evolutionary preferences (S8–S2, S8–
S9, S9–S11, S9–S12 and S13–S11), which cannot be ex-
plained by current knowledge. We predict that further ex-
perimental studies will reveal biophysical interactions for
most of these cases. In summary, these results show that
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Figure 1. The Nomura Assembly Map. (A) The modified Nomura Assembly Map: 16S rRNA shown at the top, proteins are shown as green circles. Each
line connecting two proteins indicates a directional cooperative relationship (the protein at the bottom depends on the pre-binding of the protein at the
top); red arrows indicate simultaneous presence of physical interaction and kinetic cooperativity; blue arrows signify only kinetic cooperativity and black
lines signify only physical interaction. The S19–S10 kinetic cooperativity refers to the prebinding experiments of ref. (25). (B) The edge-weighted inter-
protein co-evolutionary network is projected onto the modified Nomura Assembly Map. Proteins are shown as green circles, circle size is proportional
to the number of other proteins it co-evolves with. S21 is not shown (not analyzed as it is not universal in bacterial superkingdom). Gray colored edges
represent the presence of co-evolutionary relationships that are not associated with direct biophysical constraints (some gray edges are associated with
indirect cooperative relationships). Thickness of the lines connecting two proteins is proportional to PS.

Figure 2. The three categories of co-evolutionary pattern between S7 and
S13 cooperative pair are shown. The proteins and 16S rRNA are presented
as cartoon views. Each dotted line represents co-evolution between two
residues it connects. Green lines represent direct co-evolution (e.g. 54Ser of
S7 co-evolves with 48Leu of S13), blue lines represent indirect co-evolution
(e.g. 103Trp of S7 and 1Met of S13 co-evolve with 947G of 16S rRNA) and
red lines signify third-party co-evolution (1336C co-evolves with 950U).
Only some residue positions are highlighted to maintain the clarity of the
image.

comparative sequence analysis can provide compelling can-
didates for cooperativity in macromolecular self-assembly.

Protein-induced rRNA helix rearrangements. Protein-
induced rRNA structural rearrangements are the molec-
ular mechanisms that establish inter-protein cooperative
relationships. Although our knowledge regarding protein-
induced rRNA helix rearrangements is limited, two such

important cases have been studied extensively: the 5-Way
Junction (5WJ) rearrangement at 5′-domain (49,54) in-
duced by S4, and the 3WJ rearrangement at central domain
(52) induced by S15.

The 5WJ rearrangement. S4 contacts the 5WJ (composed
of helices H3, H4, H16, H17 and H18) of the 16S rRNA
(Figure 3A) with its intrinsically disordered N-terminal do-
main and forms an initial encounter complex (55) with
H16–H17 (22). The initial encounter is followed by a sub-
sequent protein–rRNA co-folding (56). Helix H16 is one
of the strongest signatures in the bacterial 16S rRNA (57),
which is accompanied by (and co-evolves with) a 12 amino
acid long bacterial-specific insertion in S4 (10). Numer-
ous non-native contacts between this S4-insertion and the
bacteria-specific tip of H16 (positions 408–434, E. coli num-
bering) are formed at the first 100 ms of protein–rRNA con-
tact (22). We observe co-evolution between H16–H17 and
the disordered N-terminal (Gln36-U421) and C-terminal
(Ala158-U421) segments of S4, which indicates the essen-
tiality of this initial encounter. The H17 segment 447–487
is another bacterial-specific structural signature (10), which
participates in the initial encounter with S4 (22). We have
identified several CEPs between the intrinsically disordered
C-terminal loop (Lys8-A468, His41-A468) and N-terminal
segment (Thr181-A460, Thr181-U464, Thr181-U476) of S4
and this signature site (Figure 3B).

The initial encounter is followed by protein-induced
structural rearrangements of H18 pseudoknot (H17–H18
junction), the 430-loop of H16 and a right-angle motif be-
tween H3, H4 and H18 (54). Surprisingly, we do not ob-
serve any protein–rRNA CEPs between S4 and H3–H4–
H18; this indicates that S4 is required, but may not be in-
dispensable for further reconstitutions of 5WJ. Molecular
Dynamic simulation studies support our hypothesis by re-
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Figure 3. Co-evolutionary patterns at 5WJ and 3WJ rearrangement sites. (A) The native molecular contacts (green: H-bonds, yellow: van der Waals
contacts) between S4 and 5WJ region of the 16S rRNA are highlighted. (B) The protein–rRNA and intra-rRNA co-evolutionary patterns at the 5WJ
segment are shown (RNA: cartoon plus surface, S4: salmon cartoon). Each helix in the 5WJ segment is highlighted. (C) The inter-helix co-evolutionary
network of 5′ domain is shown; each node represents one rRNA helix, while edge thickness is proportional to co-evolutionary preference scores. The 5WJ
helices cluster as a dense-weighted module (yellow nodes, red edges). (D) Native molecular contacts between S15 and 3WJ region (green: H-bonds, yellow:
van der Waals contacts) of the 16S rRNA. (E) The intra-rRNA co-evolutionary pattern at the 3WJ segment (RNA: cartoon plus surface, S15: orange
cartoon). Each helix in the 3WJ segment is highlighted. (F) The inter-helix co-evolutionary network of central domain is shown; the 3WJ helices cluster
as a dense-weighted module.

porting that 5WJ segment has an inherent self-folding ca-
pability. S4 protein only slows down the rRNA fluctuations
and induces anisotropic motions between the intermediate
and the native complex (49). The disordered N-terminal
loop of S4 likely plays the key role in guiding the rRNA
folding (49), but the folding itself emerges from the in-
herent rRNA plasticity. Therefore, evolutionary signatures
of this biophysical process are likely to be found in intra-
rRNA co-evolutionary pattern, rather than protein–rRNA
co-evolution.

To gain further insight, we transform the intra-rRNA
CEPs from each of the 16S rRNA domains into three in-
dependent edge-weighted networks where each rRNA he-
lix represents a node and PS values between helix pairs are
the edge-weights (Supplementary Materials section 3.3). We
perform module analysis (simultaneously considering the
local density and edge-weights) on these networks to iden-
tify the subset of helices exhibiting stronger tendency of
having CEPs.

The dense-weighted module at 5′-domain includes the
5WJ helices (H3, H4, H16, H17 and H18), along with
H11 and H15 (Figure 3C, Supplementary Table S1). The
residue-level co-evolutionary pattern at the 5WJ is shown
in Figure 3B. Although protein–rRNA co-evolution is lim-
ited only between S4-H16 and S4-H17, strong intra-rRNA
co-evolution is observed among these helices. This is ev-

ident from the fact that 5WJ helices exhibit significantly
higher PS than rest of the 5′-domain helices (P < 10−3). The
energetic coupling among the helices emerging from their
protein-guided folding might be the physical origin of this
co-evolution. S4 binds at 5WJ, stabilizes the 530 loop (H18)
of the decoding center and increases flexibility of H3 (54).
In the next step, S16 protein, recognized by H15, drives a
conformational change at H3 that stabilizes pseudoknots at
H18 in the decoding center (58). This functional constraint
between H3 and H18 is reflected in their high PS (strongest
among 5WJ helices). S16 is cooperative to S4 and S20 pro-
teins; S20 is recognized at H11 and both H15 and H11 are
tightly packed with the 5WJ helices in the native structure.
This is likely the reason that they appear at the same dense-
weighted module with the 5WJ helices (Figure 3C).

The 3WJ rearrangement. The 3WJ rearrangement in-
duced by S15 protein nucleates the central domain as-
sembly (52). The thermodynamic cycle of 3WJ rearrange-
ment (21) shows how inter-protein energetic coupling is
maintained by helix rearrangements. S15 binds with the
3WJ RNA (Figure 3D) with high affinity and is accompa-
nied by a conformational change in the rRNA, by which
H20 and H22 form an acute angle between them, and
H21 and H22 are coaxially stacked (Figure 3E). At the
absence of S15, the succeeding S6-S18 heterodimer binds
weakly (KS6−S18 = 38 nM, �GS6−S18 = −10.6 kcal/mol) at
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the junction of H22, H23a and H23b. But S15-induced 3WJ
rearrangement dramatically increases the affinity of S6-S18
(KS6−S18 = 0.1 nM, �GS6−S18 = −14.3 kcal/mol), causing
–3.7 kcal/mol coupling energy between S15 and S6–S18.
This stabilizes the folded rRNA structure to its native state
(21,25) and accelerates the S6–S18 association about 120
fold (25). Our analysis shows that S15 protein co-evolves
with only two nucleotide positions of H23 (Ile32-U701 and
Ile32-G711), while S6–S18 heterodimer co-evolves with few
nucleotide positions at H22 and H23 (G664, C679 and
A687). However, numerous intra-rRNA CEPs are identi-
fied among the 3WJ helices (Figure 3E); the dense-weighted
module of central domain includes the 3WJ helices and he-
lix H24 (Figure 3F). Therefore, similar to 5WJ scenario, this
result supports the fact that 3WJ rearrangement is mostly
determined by inherent rRNA plasticity (59). Helices H21
and H24 recognize another primary binder S8 (binds before
S15) and helix H24 is involved in constructing the E-site of
ribosome as well. This might be the biological reason that
H24 preferably co-evolves with 3WJ helices.

Kinetic trap: slow structural reconstitutions at the 3′ domain.
Slow refolding observed at the 3′ domain (23) may result
from a domain-wide kinetic trap (23,25). Kinetic trap refers
to a state in the assembly in which further conformational
transitions from an intermediate sub-complex become dif-
ficult due to its thermodynamic stability. If an assembly is
arrested in a kinetic trap, the accumulated intermediate can
proceed only slowly or not at all on the assembly.

The 3′ domain assembly faces substantial kinetic barriers
after S7 binding, which is evident from the fact that S7 only
mildly accelerates secondary protein (S9–S13–S19) bind-
ings (25). The slow reconstitutions likely include mutual co-
folding of the protein and rRNA components, which can
be inferred from the observable numerous protein–rRNA
CEPs in this domain. Furthermore, the 3′ domain edge-
weighted co-evolutionary network includes a large dense-
weighted module composed of 10 helices (H28, H29, H30,
H31, H34, H35, H36, H39, H43 and H44) (Supplemen-
tary Table S1). This result differs from the 5′ and central
domain scenario, where only a few helices constitute the
dense-weighted module. 3′ domain is composed of 8 of the
20 proteins of SSU and the rRNA segment is structured
into 16 helices, each making native contacts with proteins.
So, we cannot explain the highly preferable co-evolution
among these helices only by the maintenance of coopera-
tive relationships. But H28, H29, H30, H31, H34, H43 and
H44 are involved in constituting the tRNA-movement tun-
nel (60), which is constituted at the final stages of the as-
sembly. Therefore, there is a strong probability that these
helices might be arrested in a kinetic trap. Escape from ki-
netic trap involves an ensemble of infinitesimal reconstitu-
tion steps, for which the trapped helices face strong assem-
bly constraints. This assembly constraint likely drives the
preferable co-evolution among the intra-module helices.

The results above demonstrate the power of co-
evolutionary patterns to predict the physical involvement
of protein and rRNA components in the local folding
process. In the next section, we test whether assembly
kinetics also drive co-evolution.

Relative folding rates of 16S rRNA domains. In complex
systems such as the ribosome, folding kinetics has been
proven very difficult to resolve (3). However, available ex-
perimental data shows that the three domains of 16S rRNA
fold independently and assemble at different rates (25): the
central domain folds the quickest, the 3′ domain folds the
slowest and the 5′-domain folds at an intermediate rate.

Folding rates of simple proteins are independent of their
structural stabilities (folding free energy) and depend on the
‘topology’ of the native state (44,61). Contact order, a rep-
resentative of protein ‘topology’, is defined as the average
primary chain separation of residues in 3D contact. Higher
values of contact order indicate numerous long-range inter-
actions at the native state and such interactions require a
long time to achieve during folding (44). Conversely, pro-
tein contact networks (networks of amino acids as nodes
and non-bonded interactions among them as edges) with
high assortative mixing (nodes tend to connect with nodes
of similar degree) facilitate protein-folding rate, likely by al-
lowing the rapid propagation of perturbation waves of con-
formational transitions (61). A non-covalent tertiary con-
tact implies a steric constraint between two residues at the
native state. Based on the strong statistical associations be-
tween assembly constraints and co-evolution, we expect
that local patterns of co-evolution at different domains of
16S rRNA can vary according to their folding rates.

We introduce a parameter analogous to Contact Order,
termed CEO, which measures the average primary chain
separation of co-evolving pairs; the assortative mixing of
the co-evolutionary network is computed by the ‘Coefficient
of Assortativity’ (CoA). The lower CEO (97.50) and higher
CoA (0.87) of the central domain (compared to 5′ and 3′ do-
mains, Table 1) suggest relatively quicker folding, which is
consistent with experimental evidence that central domain
assembly faces few kinetic barriers after stabilization of the
native rRNA conformation by S15 binding (21,25). Con-
versely, in 5′- and 3′-domains, kinetic barriers hinder recon-
stitution steps and folding is arrested in non-native stable
conformations (25). The 3’-domain has a strong tendency
to fall into a domain-wide kinetic trap that slows down its
structural reconstitutions (23,25); consequently, 3’ domain
exhibits the highest CEO (192.75) and lowest CoA (0.62).
The 5’-domain folds at an intermediate rate and exhibits in-
termediate CEO (136.05) and intermediate CoA (0.78).

This analysis shows that co-evolutionary patterns mimic
the topology of simple proteins according to how quickly
the protein–rRNA constituents mutually co-fold into the
native structure. Since two constrained sites are often struc-
turally remote, we have investigated whether the assortative
topology of the network persists if we remove the CEPs
within steric interaction range. Remarkably, the associa-
tion between local folding rates and the order of assorta-
tive mixing remains unaltered when considering only non-
steric CEPs; similar results were obtained for CEO (Ta-
ble 1). These results suggest a novel characteristic of a
multidomain-multi-component system, where the topologi-
cal features of a network of co-evolving residues at different
domains are associated with their local folding rates (kinet-
ics of the assembly).
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Table 1. Co-Evolution Order (CEO) and Coefficient of Assortativity (CoA) at three different domains of 16S rRNA

16S rRNA domain CEO (all CEPs) CEO (non-steric CEPs) CoA (all CEPs) CoA (non-steric CEPs)

5′-Domain 136.05 60.08 0.785 (10E−54) 0.591 (10E−63)
Central domain 97.50 32.45 0.871 (10E−43) 0.708 (10E−35)
3′-Domain 192.75 159.57 0.615 (10E−32) 0.408 (10E−21)

The values in the parenthesis indicate the statistical significance of CoA value. Our results show that co-evolutionary patterns within SSU mimic the
topology of small proteins according to local folding rates.

Nucleotides essential for protein recognition. We have in-
vestigated whether residues playing key roles in protein–
rRNA recognition can be identified from their co-
evolutionary patterns. A nucleotide is considered as protein-
recognizing if it loses >1 Å2 of its accessible surface area
when passing from uncomplexed state to complexed state.
For each protein, we look for two categories of nucleotides
among those physically recognize the protein: (i) con-
served sites (conserved group: Gcon) and (ii) sites in the
co-evolutionary network. We compute the degree and clus-
tering coefficient values of the co-evolving nucleotides and
based on both the parameters, they are clustered into sev-
eral groups. This clustering approach allows us to isolate a
small group of nucleotides (Gcoevol) associated with high-
est clustering scores compared to rest of the population
(Supplementary Materials section 3.4). Interestingly, nu-
cleotide positions experimentally identified to be important
for recognizing a particular protein are always associated
with Gcon + Gcoevol group (Supplementary Table S2). Nu-
cleotides included in the Gcoevol group always co-evolve with
the neighboring protein-recognizing rRNA stalk. For ex-
ample, at S15 binding site (nucleates central domain as-
sembly) we have isolated a group of five nucleotide posi-
tions (C582, C736, U740, G741 and U751). All these posi-
tions are experimentally identified as essential for recogniz-
ing S15 and phenotypic effects of their mutations are lethal
(62,63). This co-evolutionary pattern suggests that protein-
recognizing rRNA segments (experiencing protein-guided
reconstitutions) are thermodynamically constrained to the
nucleotides essential for protein recognition. This method
may help to identify residue positions critical for ligand
binding.

Global constraints in ribosome assembly: inter-domain pack-
ing

Ribosomal proteins involved in inter-domain packing exhibit
numerous CEPs with their binding partners. A fundamen-
tal attribute of multidomain protein folding is the molecu-
lar packing of domains to stabilize the final native structure
(64). The neighboring domains of the SSU exhibit intra-
rRNA and protein–rRNA molecular contacts with each
other, stabilizing their quaternary orientations in 3D space.
Some proteins (S2, S2, S3, S5, S12 and S20) contact differ-
ent 16S rRNA domains and proteins from other domains to
ensure inter-domain packing (53). S20 stabilizes the quater-
nary orientation of helix H44; S2–S3–S5–S12 proteins pre-
dominantly bind to the central pseudoknots of 16S rRNA
(near to H2 and H19), physically contacting multiple rRNA
domains (53). Interestingly, these proteins exhibit signif-
icantly numerous (P < 0.05) protein–rRNA CEPs (∼72
CEPs/protein) compared to proteins connecting only one

rRNA domain (∼11 CEPs/protein). Similarly, we observe
strong PS among protein pairs maintaining inter-domain
packing through physical interaction (S7–S11, S5–S3, S8–
S12) compared to any random inter-domain protein pair.

Co-evolution among rRNA helices are jointly driven by local
and global assembly constraints. Inter-domain packing is
mainly mediated by numerous tertiary intra-rRNA molec-
ular contacts. Helices around the neck and shoulder re-
gions (53) of the SSU construct the tRNA-movement path
(60) and the functional APE sites (Figure 4A). We gener-
ate an inter-helix edge-weighted contact network (rRNA
helices are nodes, an edge represents molecular contact be-
tween them, edge-weight represents number of contacts) to
identify the rRNA helices involved in inter-domain packing
(Figure 5). For 5’ and central domain packing these physi-
cally interacting helices are H1, H2, H3, H4, H7, H11, H12,
H19, H20, H21, H27; for 5’ and 3’ domain packing, H2,
H13, H18, H34, H36 and H44 play the key roles; and he-
lices H20, H24, H25, H26, H28, H29, H36, H44 and H45
are essential for central and 3’ domain packing.

To understand the co-evolutionary pattern associated
with helices involved in inter-domain packing, we trans-
form the intra-rRNA CEPs into an edge-weighted network
where each rRNA helix represents a node and PS values
between helix pairs are the edge-weights. Module analyses
of this network predominantly pick up a group of helices
gathered around the APE sites as a dense-weighted module
even with the highest computational stringency (Figure 4B).
Since such initial modules do not significantly differ from
the background network, stringency is further reduced. The
growing module gradually incorporates 5WJ, 3WJ and the
group of helices likely involved in 3′ domain kinetic trap
(Figure 4B). Once the intra-module helices cover 90% of
known 16S rRNA point mutation sites (65,66), the final
module is projected onto the 16S rRNA crystal structure
(Figure 4C).

APE-neighboring helices from all three domains co-
assemble to construct the tRNA-movement path. Two
coaxially stacked helix pairs from 5′ domain (H16 and H18)
and 3′ domain (H31–H34) connect with one another to
stabilize tRNA binding at the decoding center. The anti-
codon loop of the A-site tRNA interacts with the decod-
ing center located at the conserved 530-loop of H18; and
this conformation is further stabilized by few contacts be-
tween the anticodon arm and conserved H31–H34 pair.
The P-site tRNA mostly connects helix H30 and the H42-
pseudoknot of 3′ domain, while E-site tRNA connects the
tip of helix H23 from central domain. We coin a term ‘APE-
neighboring helices’ for those located within 20 Å from the
tRNA-recognizing nucleotides (H16, H18, H23, H24, H27,
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Figure 4. Co-evolutionary pattern at the APE-neighboring region of the 16S rRNA. (A) The tRNA movement tunnel: the A, P and E site tRNAs are shown
as cartoon view (nt 28–40 segments of their anticodon arms), while 16S rRNA is shown as a colored surface. The tRNA-movement tunnel is highlighted
by gradually increasing the surface transparency with surface depth. (B) The modules found (as computational stringency to finding a module is gradually
reduced) within the inter-helix edge-weighted co-evolutionary network of 16S rRNA; black curve shows growth of module size, while blue curve indicates
statistical significance of the module. Reduction of stringency is presented in a linear scale. Salmon colored nodes signify APE-neighboring helices. The
percentages indicate how many known 16S rRNA point mutation sites reside within the module-helices. (C) The module including 90% of all reported
mutation sites is projected onto the 16S rRNA (white cartoon). (D) The co-evolution among the APE-neighboring helices is shown. Helices from each
domain are colored differently: red (5′ domain), green (central domain) and cyan (3′ domain). (E) The CEPs at the APE-neighboring region are shown.
Many CEPs are identified between central and 3′-domain. The H44 of 3′-minor domain (green cartoon) exhibits several CEPs with its neighboring central
domain and 3′-major domain nucleotides.

Figure 5. The inter-helix edge-weighted contact network of the 16S rRNA
at its native assembled state. The network is constructed based on the num-
ber of van der Waals contacts between the atoms of the rRNA helices. A
van der Waals contact is considered if two atoms are <6 Å separated in
3D space. In this image, each node represents a helix and lines connecting
them represent the presence of van der Waals contacts between them. Edge
thickness is proportional to the number of contacts. This network clearly
demonstrates the intra-domain and inter-domain helix contacts. This net-
work is prepared using the crystal structure having PDB identifier 2AVY
(see Supplementary Dataset).

H30, H31, H34, H43 and H44). Interestingly, these ten he-
lices include those previously reconstituted at 5WJ (H16,
H18) and 3WJ rearrangements (H23) and those experienc-
ing 3′ domain kinetic trap (H30, H31, H34, H43 and H44).
Gradual appearance of these previously reconstituted he-
lices at the growing module (Figure 4B) illustrates local
intra-domain constraints that can also act as global inter-
domain constraints at different stages of assembly.

Structural constraints emerging from the inter-domain
coupling likely drives strong preferable co-evolution among
the APE-neighboring helices (Figure 4D). A majority of the
intra-rRNA CEPs at this region (Figure 4E) connect helix
H44 with neighboring 3’- and central domain rRNA seg-
ments. A majority of the CEPs connecting helix H44 (es-
sential for translational fidelity (67)) are mediated by nu-
cleotides flanking to conserved A1408, essential for 50S
docking (67).

These results demonstrate how the local (intra-domain)
and global (inter-domain) assembly constraints jointly de-
termine the trajectories of sequence evolution. In the next
step, we examine the association between co-evolution and
the functional importance of individual nucleotides, vali-
dated by the point-mutation data.

Association of co-evolutionary patterns with point-mutation
data. Interestingly, the reported 16S rRNA point-
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mutation sites (65,66) with significant phenotypic effects
are located around the APE sites and early-protein recogni-
tion sites (Supplementary Materials section 3.5 and Table
S3); we have classified these mutation sites into three cate-
gories (drastic, moderate and mild) according to severity of
their phenotypic effects (66). The point-mutation sites are
hubs/conserved positions and they are always identified in
the neighborhood of other hubs and conserved nucleotides
in the 3D structure. Performing a positional clustering
using the Euclidean distances among the residues, we have
identified 32 unique clusters of conserved/hub nucleotides
(CH clusters) in the native 16S rRNA crystal structure
(Supplementary Materials section 3.5.2). Interestingly, 21
of these 32 CH clusters include one or more documented
point-mutation sites. Next, we have applied a random
weighting method based on the number of mutational
sites present at a CH cluster and the severity of their phe-
notypic effects (Supplementary Materials section 3.5.3).
This method classifies the CH clusters into four groups
according to gradually decreased number of mutations
with decreased severity: highly sensitive (HS), moderately
sensitive (MS), mildly sensitive (ms) and no-mutation
(NM). HS and MS clusters are located mostly at the APE-
neighboring and primary-binder recognition sites; these
clusters are composed of few big hubs surrounded by many
conserved residues and the contributing hubs co-evolve
among themselves and with the proximal sites. Conversely,
ms and NM clusters are composed of many small hubs
and few conserved residues and they tend to co-evolve
with distantly placed HS and MS hubs (Supplementary
Figure S1 and S2). The ms and NM clusters are generally
located at secondary and tertiary binder recognition sites,
so their co-evolutions with distant HS and MS sites are
likely driven by cooperative relationships.

Functionally essential sites exhibit stronger co-evolution
with their neighborhood, compared to sites those are dis-
pensable. Amino acid conservation is often used to predict
functionally important sites; our results indicate that co-
evolutionary information can also predict both functional
sites and their interactions.

The putative important roles of the HS and MS-group
residue clusters might be applied for antibiotic target site
prediction. The known antibiotics target deleterious muta-
tion sites of 16S rRNA; based on this observation, Yassin
et al.(65) predicted 38 new deleterious mutation sites which
might act as potential drug target sites. We pinpoint a sub-
set of those sites that might be strong candidates of being
targeted by antibiotics, based on their locations within HS
and MS-group clusters (Supplementary Figure S3).

CONCLUSIONS

We have employed comparative sequence analysis and net-
work theory on the self-assembly process of a macromolec-
ular complex (which is central to cellular metabolism and
phylogenetic analysis) to reveal statistical associations be-
tween co-evolutionary patterns and mechanistic of self-
assembly process. We have developed a set of new metrics,
which allow us to extract functionally relevant information
from co-evolutionary signals. Protein–rRNA recognition,
cooperativity phenomena and protein-induced helix rear-

rangements play crucial roles in driving inter-protein and
protein–rRNA co-evolution. Molecular packing of rRNA
helices plays a key role in driving intra-rRNA co-evolution.
All three domains of the 16S rRNA fold independently
and assemble at different rates. Folding rates of three do-
mains are associated with the topological characteristics
of their co-evolutionary networks. The co-evolutionary re-
lationships provide biological bases for deleterious muta-
tion sites and further allow prediction of putative antibi-
otic targeting sites. In summary, our results reveal that both
molecular interactions in the native state as well as criti-
cal non-native interactions during the assembly drive co-
evolutionary relationships.

These observations are a step toward understanding the
relationship of assembly constraints of the ribosome and
co-evolution among its protein–rRNA constituents. If such
relationships hold for other macromolecular complexes,
then co-evolutionary analyses, in combination with exper-
imental approaches, might be helpful in illuminating al-
losteric mechanisms and multi-domain protein folding. For
most large macromolecular complexes such as eukaryotic
ribosomes, proteosomes and viral capsids, an understand-
ing of the assembly process remains elusive. One can ap-
ply similar methods as described here to extract candidate
sites involved in critical functional interactions during self-
assembly of such complexes.

SUPPLEMENTARY DATA

Supplementary Data are available at NAR Online.
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