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The combination of complete genome sequence information and
estimates of mRNA abundances have begun to reveal causes of
both silent and protein sequence evolution. Translational
selection appears to explain patterns of synonymous codon
usage in many prokaryotes as well as a number of eukaryotic
model organisms (with the notable exception of vertebrates).
Relationships between gene length and codon usage bias,
however, remain unexplained. Intriguing correlations between
expression patterns and protein divergence suggest some
general mechanisms underlying protein evolution.
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Introduction
Sequence data from complete genomes and global 
estimates of gene expression provide rich sources of new
information with which to determine mechanisms of both
codon-usage bias and protein evolution. Synonymous
changes do not alter the amino acid sequence encoded 
in DNA and were thought to be the among the best 
candidates for canonically neutrally evolving sites [1,2].
However, selectionist responses immediately following
proposals of neutral molecular evolution by Kimura [3] and
King and Jukes [1] included speculation that translational
selection occurs at silent sites.

Both Clarke [4] and Richmond [5] noted that, because
tRNAs for a given amino acid are found in unequal 
concentrations, synonymous codon choice might affect 
fitness through their effect on the rate of protein synthesis.
Small, but evolutionarily significant, differences in fitness
among synonymous alternatives are now supported by a
combination of laboratory studies and DNA sequence
analyses in a wide range of taxa (reviewed in [6–8]). 

Relationships between gene expression and levels of 
synonymous codon usage provide an important line 
of evidence for translation selection. Recently, genome-
wide estimates of expression levels have become available
for model organisms and have helped both to establish
major codon preferences, especially among multicellular
eukaryotes, and to determine the phenotypic bases of
selection at silent sites. Although a simple evolutionary
model of mutation–selection drift appears to account for
many features of silent DNA variation within and between

genomes, some patterns, such as negative associations between
gene length and codon-usage bias, remain unexplained. 

Perhaps more surprising than the relationships between
codon-usage bias and gene expression are associations
between the evolutionary rates of proteins and the tissue-
specificity and breadth of their expression. Such patterns
may shed light on factors that underlie ‘functional 
constraint’, such as the biochemical complexity of protein
interactions. In addition, expression estimates may help to
determine whether the primary structures of proteins
reflect natural selection to enhance translational efficiency
as well as the specific functions of polypeptides. This
review will focus on recent studies that explore how
knowledge of gene expression levels can shed light on the
causes of both DNA and protein evolution.

Preference for major codons at silent sites 
in DNA
In most genomes, synonymous codon usage shows an 
overall ‘bias’, or departure from random usage, towards
what have been termed ‘major codons’. Major codons 
are, almost without exception, recognized by cognate
tRNAs that are relatively abundant and/or have perfect
Watson–Crick pairing [9–11]. Laboratory experiments in
Escherichia coli have shown that major codons are recog-
nized and translated more quickly, and with fewer errors,
than their less abundant counterparts (reviewed in [6]). 

Faster rates of ribosomal elongation allow more efficient
use of the protein synthesis machinery in the cell (i.e. more
incorporations per ribosome per unit of time). In addition,
major codons may reduce the energetic costs of proofread-
ing (i.e. rejecting non-cognate tRNAs) during protein
synthesis and may decrease the costs of synthesizing 
dysfunctional peptides, by reducing the probabilities of
both misincorporations and processivity errors (ribosomal
frameshifting and drop-off; reviewed in [12]). Under such a
scheme, the fitness benefit to encoding a major codon is
predicted to be a function of the number of aminoacyl-
tRNA selections at a given codon; therefore, major codons
should be more beneficial in highly expressed genes. 

Levels of gene expression and codon usage
Early studies in E. coli [13–15] and the budding yeast
Saccharomyces cerevisiae [16] revealed strong bias in synony-
mous codon usage for genes encoding abundant proteins
such as ribosomal proteins and elongation factors, RNA
polymerase subunits and glycolytic enzymes. In contrast,
the codon usage of presumably low-expression transcrip-
tion factors and other regulatory genes is more uniform.
Quantitative data for mRNA abundances [16] and for 
protein abundances measured by 2D gel electrophoresis
[17] have established strong correlations between the bias
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in synonymous codon usage and estimates of translation
rates for a small number of genes (eight in both studies).

More recent data from serial analysis of gene expression
(SAGE), high-density oligonucleotide arrays (GeneChips)
and expressed sequence tag (EST) libraries (reviewed in
[18]) have increased the scope of expression analyses to a
scale of thousands of genes. The highest quality whole-
genome mRNA abundance data are found in studies of
S. cerevisiae [19,20]. Although the numbers of identified
protein spots on 2D gels are small, the abundances of
mRNA and their corresponding proteins show fairly strong
associations (n = 148, Spearman rank correlation, rs = 0.8 in
[21]; and n = 156, rs = 0.59 in [22]).

But comparisons between different studies of mRNA 
quantification reveal unexpected inconsistencies. Coghlan
and Wolfe [23••] found that estimates of mRNA levels from
different laboratories show a surprisingly weak association
(rs = 0.68), even though the studies used GeneChips from
the same manufacturer with similar strains of yeast grown
in similar conditions [19,20]. These differences in expres-
sion patterns may be due to both a lack of precision in
estimating mRNA levels and actual differences in the
mRNA populations of the cells examined. Although 
the laboratory conditions were similar in the experiments,
the microenvironment and cell density may alter the 
patterns of expression of several genes [24,25]. In addition,
it is unclear how well mRNA abundances in a single 
laboratory environment reflect expression patterns within
cells exposed to a cross-section of natural environments. 

Despite these caveats, measures of mRNA abundance
seem to be informative predictors of codon-usage bias.
Although the positive correlation between major codon
usage and mRNA abundance among S. cerevisiae genes

shows a great deal of scatter (Figure 1a), the average
codon-usage bias increases steadily among expression
classes of genes (Figure 1b).

Duret and Mouchiroud [26] have used sequence matches
to EST libraries to show similar relationships between
codon-usage bias and mRNA abundances in the multicel-
lular eukaryotes Drosophila melanogaster, Caenorhabditis
elegans and Arabidopsis thaliana. These data may be more
error-prone than oligo-chip estimates of mRNA abun-
dances because of biases in the tissues sampled, biases in
cloning mRNAs, and the ‘normalization’ of cDNA libraries
(adjustment toward uniform concentrations of cDNAs
from different genes) prior to DNA sequencing. Gene 
prediction may also be less accurate than in unicellular
organisms where introns (and alternative transcripts) are
less abundant. However, broad-scale associations between
mRNA abundance and codon-usage bias add support to
strong anecdotal evidence for relationships between levels
of gene expression and codon-usage bias [27–29], as well as
to both associations between codon-usage bias and tRNA
abundances [30,31•], and population genetic tests of weak
selection at silent sites ([32–37]; but see also [38••,39••]) in
model eukaryotes.

Transcription, mutation and major codon usage
Although models describing the evolution of codon-usage
bias generally assume that mutational processes occur 
uniformly among genes ([40–42]; but see [43•]), relation-
ships between transcription levels and mutation patterns
have been established in E. coli and S. cerevisiae. In E. coli,
C to T mutations occur at relatively high frequencies on the
non-coding strand of DNA [44], presumably through a
mechanism involving deamination of cytosines in single-
stranded DNA during transcription [45•,46]. Such a process
will alter both the rate and the spectrum of mutations as a
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Preference for major codons in S. cerevisiae: mRNA abundance and
codon-usage bias. (a) Relationships between major codon usage, MCU
= major/(major + minor) codons, and mRNA abundance [20] among all
genes with detected transcripts. (b) The same relationships among
expression-level classes. Genes were ranked by mRNA abundance and
binned into categories containing at least 10,000 codons per category.

Average MCU and mRNA levels among genes are plotted.
(c) Relationships among expression categories for major codon usage
among synonymous families with all A- and T-ending major codons
(MCUAT). (d) Relationships among expression categories for major codon
usage among synonymous families with all G- and C-ending major
codons (MCUGC). Codon preferences are taken from [11].
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function of the level of gene expression; that is, cytosine
deamination should lead to an excess of thymines in highly
expressed genes. However, the magnitude of transcription-
coupled mutational processes, and its taxonomic breadth,
remain to be determined. In yeast, frameshift mutations are
strongly dependent on the rate of gene transcription
[47,48]; however, the dependence of nucleotide mutation
on transcription has not been established. 

Associations between mutational processes and transcription
do not seem to explain correlations between gene expression
and codon-usage bias in S. cerevisiae, D. melanogaster or 
C. elegans. Increases in major codon usage with expression
level for both AT-ending and GC-ending major codons
argues against a mutational explanation for codon-usage bias
in S. cerevisiae (Figure 1c, d). In D. melanogaster and C. elegans,
almost all major codons encode G or C in the third position.
In D. melanogaster, the G+C content is uniformly higher at
silent sites in coding regions than in putatively neutrally
evolving introns [49], and the base composition of introns
shows no correlation with levels of gene expression [26]. In
addition, within alternatively spliced genes, constitutively
translated exons show higher major codon usage than alter-
natively spliced exons that are transcribed at the same rate
but translated at lower levels [50•]. C. elegans shows a weak,
but statistically significant, negative correlation between
G+C content and gene expression levels [26]. In the
absence of evidence for strong transcription-dependent
mutational biases toward major codons, genome-wide esti-
mates of expression levels strongly suggest that selection
coefficients at silent sites depend on rates of translation.

Gene length and codon-usage bias
Relationships among gene expression, gene length and
codon-usage bias may help to elucidate the phenotypic bases
of selection at silent sites. Correlations between gene length
and codon-usage bias are positive in E. coli and negative 
in S. cerevisiae, C. elegans, D. melanogaster and A. thaliana
[26,51,52]. Jansen and Gerstein [53••] have noted that,
among yeast genes, gene length seems to set an upper limit
on mRNA abundance: although the correlation between gene
length and mRNA abundance is weak, the maximum size of
proteins decreases steadily as a function of mRNA levels.

Relationships between levels of gene expression and the
function, or subcellular localization, of proteins might
explain this pattern. For example, integral membrane 
proteins show markedly reduced transcript levels relative
to cytosolic proteins [54] and are generally longer.
Alternatively, selection for metabolic efficiency might
affect both protein size and synonymous codon usage [55].
In terms of translational costs, reductions in protein size
should have advantages similar to those of encoding major
codons, with an added benefit of reductions in the costs of
amino acid biosynthesis and/or transport. 

Estimates of gene expression levels also allow us to test
whether natural selection discriminates among synonymous

codons to enhance translational fidelity. Selection to 
minimize translational misincorporations predicts stronger
selection, and higher codon-usage bias, at codons where
amino acid misincorporations result in the costly synthesis of
dysfunctional peptides [33]. Such patterns have been
observed within genes in both D. melanogaster [33] and 
C. elegans [56•]. Among-gene patterns can also be used to
test for translational accuracy. Eyre-Walker [57] proposed
that, for proteins translated at the same rates, selection to
reduce translational misincorporations should be higher in
longer genes because the cost of producing dysfunctional
peptides will be proportional to their length.

Relationships between codon usage and gene length have
been observed among ribosomal protein genes in both E. coli
[57] and S. cerevisiae [51]. Coghlan and Wolfe [23••] extend-
ed this analysis to the entire yeast genome by employing
partial correlations between gene length and codon-usage
bias, excluding effects of expression level, and found positive
correlations between gene length and codon-usage bias.
Thus, gene expression data suggest that translational 
selection may both reduce the sizes of highly expressed
genes and enhance the fidelity of protein synthesis (reduce
the rate of misincorporations and/or processivity errors). 

Mechanisms underlying relationships between gene length
and codon-usage bias in multicellular eukaryotes are less
clear. In contrast to patterns found in S. cerevisiae, Duret and
Mouchiroud [26] found no relationship between transcript
levels and gene length in A. thaliana and D. melanogaster,
and in fact an increase in gene size with transcript levels in
C. elegans. There is no evidence to support selection for
reduced protein size.

In the absence of expression differences among protein size
categories, negative correlations between gene length and
codon-usage bias could arise from interference in the 
evolutionary dynamics of selected sites that are genetically
linked [40,52,58]. All else being equal, sites within longer
genes will be closely linked to greater numbers of 
segregating non-neutral mutations and thus have lower
expected levels of codon-usage bias [40,52]. In C. elegans,
however, this explanation does not appear to be satisfactory;
highly expressed genes with highly expressed neighbors
do not show lower codon-usage bias than those without
highly expressed neighbors [26]. The causes of associa-
tions between gene size and codon usage in multicellular
eukaryotes remain undetermined. 

Gene expression and protein evolution
Studies of expression patterns at a genomic scale have, for
the most part, confirmed existing models of silent DNA
evolution. At the protein level, however, measures of
mRNA abundance have revealed many surprising patterns
for which the causes remain speculative. 

Duret and Mouchiroud [59••] have established that both
the tissue specificity and the breadth of expression have an
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effect on rates of mammalian protein evolution. They 
compared 2,400 genes between human and rodent (mostly
mouse) and quantified expression levels by counting gene
sequence matches in tissue-specific EST libraries.
‘Ubiquitously’ expressed proteins, whose mRNAs were
detected in 16 out of 19 tissues, evolved at average rates
that were threefold lower than those of tissue-specific
genes. Among the genes whose transcripts were found in
single (or few) tissues, rates were twofold lower for genes
expressed in brain, muscle, retina and neurons, relative to
those expressed in lymphocyte, lung and liver. Silent
divergence does not show such patterns, suggesting that
variation in mutation rates does not cause these differences
in rates of protein evolution.

Duret and Mouchiroud [59••] attributed these patterns to
greater constraints among proteins functioning in more 
complex biochemical environments than those that are
active in a narrower range of complexity (including pH and
the numbers of interacting proteins) [60,61]. They also
noted that mutations affecting proteins expressed in a larger
number of tissues may be more likely to affect an organism’s
fitness than those whose expression is tissue-specific. Their 
explanation is consistent with patterns of protein evolution
within alternatively spliced genes; regions of proteins
encoded by constitutive exons expressed in a larger number
of tissues, and at higher levels, show slower rates of evolu-
tion than those encoded by alternatively spliced exons [50•].

Differences in expression patterns among proteins that 
fall into different functional categories, or that contain 
different structural elements, might underlie correlations
between patterns of mRNA abundance and rates of 
protein evolution. Solvent-exposed amino acids evolve at
roughly twice the rate of ‘buried’ (interior) sites in globular
proteins [62] and are more likely to be polymorphic within
species [63••]. Within solvent-exposed regions, putative
sites of interaction among proteins may result in patches of
conserved amino acids [64]. 

Transmembrane regions evolve more slowly than solvent-
exposed regions [65,66] within membrane-associated
peptides, and Drawid et al. [54] have shown that yeast mem-
brane-associated proteins are generally expressed less than
cytosolic proteins. Low rates of mammalian brain protein
evolution might reflect both the greater number of physical
interactions among proteins (slower evolution among sol-
vent-exposed sites) and the expression of a relatively large
number of membrane proteins (i.e. receptors). Closer exam-
ination of rate variation within and among functional classes
and structural elements should help to delineate the causes
of tissue-specific expression and rates of protein evolution. 

Recently, Pál et al. [67••] have established relationships
between expression patterns and protein evolution in
S. cerevisiae that may not be explained by the factors 
discussed above. They compared 185 gene pairs related by
a whole-genome duplication event and found a negative

relationship between estimates of mRNA levels and 
protein divergence. Because yeast is unicellular, such a
pattern suggests that the level of expression, rather than
the breadth of expression among tissues, may be an 
important variable associated with evolutionary rates. To
detect EST ‘hits’ in many tissue-specific libraries, the
abundance of mRNA must be relatively high across tissues;
‘broadly’ expressed genes in Duret and Mouchiroud’s study
[59••] are necessarily also ‘highly’ expressed. The negative
correlation found by Pál et al. [67••] between evolutionary
rates and expression levels holds for proteins within the
same functional category and thus cannot be explained by
differences in rates among structural elements. 

Direct or indirect relationships between translational
selection and protein evolution offer potential explana-
tions for the findings of Pál et al. [67••]. In S. cerevisiae,
roughly half of the major codons end in AT and half in
GC. A mutation between amino acids can result in a
change in the translational preference status of a codon.
For example, a first codon position mutation from AAG to
CAG would convert the major codon for lysine to a minor
codon for glutamine. Such a change could be neutral at
the protein level but translationally unpreferred. Thus,
major codon preference may limit the spectrum of neutral
non-synonymous mutations. This would not seem to
explain the observations of Duret and Mouchiroud [59••],
however, because translational selection has not been
established in mammals. 

The argument posed above assumes that major codons for
different amino acids have similar translational effects on
fitness. It is possible, however, that the major codon for
one amino acid is translationally superior or inferior to a
major codon for a different amino acid (and similarly
among minor codons). Correspondences between amino
acid usage and total cognate tRNA concentrations, or gene
copy numbers, for each amino acid have been found in
E. coli, Mycoplasma capricolum [10] and yeast [68], as well as
in C. elegans [31•]. Yamao et al. [10] argued that such corre-
lations reflect selection on tRNA concentrations (mostly
through selection on gene copy number) to adjust to the
amino acid requirements of highly expressed proteins.

Percudani et al. [68] and Lobry and Gautier [69] favor
selection both on tRNA pools and amino acid usage to
explain the same pattern (see also [55,70]). The crucial 
difference between these schemes is whether translational
selection affects amino acid usage and rates of protein 
evolution. Current evidence does not distinguish between
unidirectional adjustment of tRNA pools to protein
requirements and co-adaptation of tRNA abundances and
amino acid composition. 

Conclusions
Associations between gene sequence evolution and
expression patterns on a scale of thousands of genes may
help to determine mechanisms of molecular evolution.
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Selection among synonymous codons demonstrates that
even minute phenotypic effects may be subject to natural
selection; genome-wide codon-usage bias seems to result
from benefits of increasing the efficiency of resource 
utilization and allowing more rapid growth.

Gene expression patterns may reveal cause(s) of the 
>100-fold variation in rates of protein evolution [71]. By
integrating gene expression information, the functional
and structural categorization of proteins, the physical 
location and recombination rates experienced by genes,
and cellular concentrations of tRNAs, we may shed light
on this central issue in molecular evolution.
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