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Reliable inference of ancestral sequences can be critical to identifying both patterns and causes of molecular evolution.
Robustness of ancestral inference is often assumed among closely related species, but tests of this assumption have been
limited. Here, we examine the performance of inference methods for data simulated under scenarios of codon bias evolution
within the Drosophila melanogaster subgroup. Genome sequence data for multiple, closely related species within this
subgroup make it an important system for studying molecular evolutionary genetics. The effects of asymmetric and lineage-
specific substitution rates (i.e., varying levels of codon usage bias and departures from equilibrium) on the reliability of
ancestral codon usage was investigated. Maximum parsimony inference, which has been widely employed in analyses of
Drosophila codon bias evolution, was compared to an approach that attempts to account for uncertainty in ancestral inference
by weighting ancestral reconstructions by their posterior probabilities. The latter approach employs maximum likelihood
estimation of rate and base composition parameters. For equilibrium and most non-equilibrium scenarios that were
investigated, the probabilistic method appears to generate reliable ancestral codon bias inferences for molecular evolutionary
studies within the D. melanogaster subgroup. These reconstructions are more reliable than parsimony inference, especially
when codon usage is strongly skewed. However, inference biases are considerable for both methods under particular
departures from stationarity (i.e., when adaptive evolution is prevalent). Reliability of inference can be sensitive to branch
lengths, asymmetry in substitution rates, and the locations and nature of lineage-specific processes within a gene tree.
Inference reliability, even among closely related species, can be strongly affected by (potentially unknown) patterns of
molecular evolution in lineages ancestral to those of interest.
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INTRODUCTION
Inference of ancestral and derived nucleotides within populations or

among lineages is a critical step in a number of approaches to identify

mechanisms of molecular evolution. Ancestral state inference has

been employed to reveal episodic, or lineage-specific base composi-

tion and protein evolution [e.g., 01, 02, 03, 04, 05, 06, 07]. In

addition, several population genetic tests rely on ancestral reconstruc-

tions to reveal the action of natural selection on functional classes of

mutations or in particular genetic regions [e.g., 08, 09, 10, 11, 12, 13].

This study addresses the accuracy of ancestral codon usage

inference using the phylogenetic relationships and distances

among species in the Drosophila melanogaster subgroup as a model

tree. This group of species has been the focus of a large number of

studies of mechanisms of molecular evolution. In addition, genome

sequences are now available for five species in this subgroup and

large-scale polymorphism studies are underway for at least two

species, D. melanogaster and D. simulans. Most studies that have

incorporated ancestral inference in the D. melanogaster subgroup

have employed maximum parsimony because it is simple to

implement and is assumed to be accurate among closely related

lineages [e.g., 08, 14, 06, 15, 16, 17, 18]. However, parsimony

inference can be biased under non-random character state usage (i.e.,

base composition bias) and long branch lengths [19]. Genome-wide

declines of GC content have been inferred in a number of

Drosophila lineages [02, 20, 21, 22, 23, 15, 24, 25, 26, 27, 16] as

well as among mammals [28, 29, 30, 31, 32; 33]. Support for

increases in GC content in Drosophila are confined to specific genes

or small genetic regions and/or a limited number of lineages [06, 34,

35, 36, 37]. Some studies have employed inference methods that

account for rate variation among types of nucleotide changes or

among lineages, but many claims of base composition differentiation

are based solely on parsimony reconstructions. Because parsimony is

biased toward inference of changes from common to rare states,

genes whose base composition is skewed toward GC can show

apparent declines of GC in the absence of actual changes in base

composition [19,38,39,40,41].

Here, we employ computer simulations to determine the

reliability of ancestral codon usage inference under parsimony

and likelihood approaches that have been employed in studies of

Drosophila codon bias evolution. The likelihood method imple-

ments the HKY85 model [42] which includes parameters for base

composition bias. This study begins with a description of ‘‘major

codon preference’’, a model of weak selection at silent sites.

Sequence data generated by computer simulations of major codon
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preference were used to determine the magnitude and direction of

ancestral inference biases. Factors examined include levels of

codon bias, branch lengths, departures from equilibrium, and the

location of lineages within a phylogeny. We show that the

direction and magnitude of biases in ancestral inference are

dependent on all of these factors and are relevant to the study of

molecular evolution among closely related species within the D.

melanogaster subgroup. More general implications for inferring

ancestral sequences under asymmetric and/or fluctuating sub-

stitution rates are discussed.

METHODS AND RESULTS

Major codon preference
Synonymous codon usage appears to evolve under a balance

among weak evolutionary forces in Drosophila and in a wide

range of taxa [reviewed in 43, 44, 45, 46, 47, 48]. Codons that are

used preferentially in highly expressed genes tend to be recognized

by abundant tRNA isoacceptors [43,49,50,51,52,53]. Such codons

are termed ‘‘preferred’’ or ‘‘major’’ codons. Major codon usage is

defined as the overall percentage of major codons at redundant

codons in a gene, MCU = #major codons/(#major+#minor

codons). MCU is positively correlated with gene expression levels

[reviewed in 47] and biochemical studies have shown faster and

more accurate translation at major codons than at other codons

that encode the same amino acid, termed ‘‘minor’’ or ‘‘unpre-

ferred’’ codons [reviewed in 45, 54]. Major codon preference

posits that translationally superior codons confer a fitness

advantage sufficient to bias codon usage (especially in highly

expressed genes) but small enough to allow minor codons to persist

through mutation pressure and genetic drift. Within-and between-

species comparisons of silent mutations in a number of Drosophila

species are consistent with small fitness benefits to major codon

usage [08, 55, 14, 56, 15, 26, 57, 58, 17].

Under major codon preference, the evolutionary dynamics of

synonymous changes are determined by the joint effects of

mutation, genetic drift, and weak selection. Consider a two-fold

redundant codon where A1 represents a major codon (relative

fitness = 1) and A2 represents a minor codon (relative fit-

ness = 12s). Mutations may occur at different rates u, from A1

to A2, and v, in the reverse direction. A1 to A2 changes will be

designated ‘‘pu’’ (for preferred to unpreferred) and A2 to A1

changes will be referred to as ‘‘up’’ (for unpreferred to preferred).

At a locus consisting of a number of such codons, the frequency of

major codons at the locus, MCU, will reach a steady state if u/v

and Nes remain constant over a large number of generations (see

Methods S1 for details). However, small changes in parameter

values can cause departures from steady-state that are both strong

and long-lasting; new equilibria are approached on a time scale on

the order of the reciprocal of per site mutation rate (108–109

generations in Drosophila). If changes in mutation rates or

selection intensity occur on a faster time scale than the approach to

equilibrium, codon usage may rarely be at steady-state.

Identifying lineage-specific codon bias changes and their causes is

important to our understanding of evolution at synonymous sites and

may help to reveal mechanisms of protein evolution [02]. Figures 1A

and C show expected rates of up and pu substitutions following three-

fold decreases and two-fold increases in Ne, respectively. These Ne

Figure 1. Silent divergence under departures from equilibrium major codon usage. The x-axis shows MCU values prior to a change in Ne. A:
expected instantaneous per locus rates of pu and up fixations when Ne decreases to 1/3 its original value across genes. B: expected
dup,pu = (#up2#pu)/(#up+#pu) for the 1/3Ne scenario (decreasing codon bias). C and D: expected instantaneous silent rates and dup,pu after
a doubling of Ne (increasing codon bias). Legends and X-axis scales apply to graphs in the same column. See text for details of the model. The curves
assume that variation in selection coefficients underlies MCU variation among genes (u/v = 1 across genes).
doi:10.1371/journal.pone.0001065.g001
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ratios give approximately two-fold excesses of pu and up changes,

respectively, for a gene with initial MCU = 0.7. Changes in Ne are

assumed to be constant across loci (i.e., in Figures 1A and B, all loci

experience a three-fold decrease from their initial Nes values). A

measure of skew, dup,pu = (#up–#pu)/(#up+#pu), is employed as an

index of the direction and magnitude of departures from steady-

state. Under non-stationary Nes, expected dup,pu varies considerably

as a function of MCU.

Mutational variation can also cause genome-wide changes in

codon bias. Because fixation rates are linearly dependent on

mutation rates, the pu:up substitution ratio will reflect the altered

ratio of per locus mutation rates. If codon bias variation among

lineages is caused by uniform parameter changes, then compar-

isons of dup,pu among codons experiencing different selection

intensities (i.e., codons in different genes or regions within genes or

in different synonymous families) can identify whether changes in

scaled selection coefficients or mutational biases underlie codon

bias differences. It should be noted, however, that the predictions

above are based on a model that does not account for ancestral

polymorphism. When Neu is large, the frequency distribution of

silent polymorphisms may need to be considered when predicting

up:pu ratios following parameter changes. McVean and Charles-

worth [59] showed that equilibrium MCU predictions are robust

to polymorphism, but this result has not been confirmed for non-

stationary evolution.

Simulations of codon bias evolution
Computer simulations were employed to test the performance of

ancestral reconstruction methods with a focus on inference of non-

stationary codon bias and its causes in the D. melanogaster subgroup.

Tree topology and branch lengths Data were simulated for

six extant nodes given a topology and branch lengths set to

estimates for the D. melanogaster subgroup (Figure 2). This tree

topology is strongly supported in analyses of nuclear genes using

sequences from relatively closely related outgroup species from the

takahashii and suzukii subgroups [60,61]. Analyses of much larger

numbers of loci (but with more distantly related outgroups) are

generally consistent with this tree, but also support gene-specific

topologies that vary with respect to the placement of the D. yakuba

and D. erecta clades [62].

Average synonymous divergence is shown for six species in the D.

melanogaster subgroup in Figure 2. The branch lengths in the ‘‘1x’’

tree in Figure 2 were employed in the simulations. Extant nodes on

the simulated tree will be referred to by the first letter of the species’

name. Internal nodes are named according to their child nodes (i.e.,

the node connecting t and y is ‘‘ty’’ and the node connecting ty and eo

is ‘‘tyeo’’). Lineages will be referred to by the name of the upper node

(i.e., ‘‘m’’ refers to the branch connecting the ms and m nodes and

‘‘ms’’ refers to the branch between the mstyeo and ms nodes). Branch

lengths were chosen to give a symmetric (unrooted) tree with silent

divergence levels between maximum likelihood [63] and Nei-

Gojobori (NG) [64] estimates (see Figure 2 legend for details).

Although data were simulated for the ancestral lineage (mstyeo) as well

as the ten lineages in the 1x tree shown in Figure 2, ancestral states

were reconstructed on an unrooted tree. Thus, silent changes were

assigned to eight lineages: m, s, t, y, ty, e, o, and eo.

Simulating sequence evolution Nucleotide changes were

simulated for sequences with random amino acid usage (i.e., each

amino acid was represented in the sequence in proportion to its

level of redundancy in the standard genetic code). Sequence lengths

were 4,941 (61681) codons. Only synonymous changes at third

codon positions were simulated (six-fold redundant codons evolved

as two-fold or four-fold families). For each codon, state-transition or

‘‘substitution’’ probabilities to other synonymous codons were

calculated by multiplying a per site per generation mutation rate of

261025 and the fixation probability for the mutation. Codon

changes in the simulated trees will be referred to as ‘‘fixations’’ or

‘‘substitutions’’ although population data were not simulated.

Equal mutation rates were assumed among all nucleotides. All G-

and C-ending synonymous codons were assigned a fitness of 1 and

all A- and T-ending codons were assigned a fitness of 1-s. Ne was set

to 5,000 diploid individuals and values of s were assigned to give the

following equilibrium MCU values: 0.5, 0.6, 0.7, 0.8, 0.9, and 0.95

(in these simulations, MCU is equivalent to %GC). Nucleotide

ambiguity codes S and W will be used to refer to G or C and A or T,

respectively. This substitution model will be referred to as the

‘‘GCpref codon’’ model.

Variable parameters in the simulations were: the numbers of

generations on each branch, mutation rates, the fitness advantage

of G- or C-ending codons, s, and effective population size, Ne. The

Figure 2. Synonymous distance trees for six Drosophila melanogaster subgroup species. m, s, t, y, e, and o refer to D. melanogaster, D. simulans, D.
teissieri, D. yakuba, D. erecta, and D. orena, respectively. The assumed tree topology ((m, s), ((t, y), (e, o))) is based on [60]. Silent distances were
calculated using CODEML [63] and averaged across 22 genes. (ML) unrooted tree showing maximum likelihood distances under a codon-based
substitution model. Equilibrium frequencies of each codon were calculated from the nucleotides frequencies at three codon positions (F3x4). (NG)
unrooted neighbor-joining tree based on Nei-Gojobori [64] pairwise distances. Numbers shown on each branch are per site synonymous distances
x1000. (1x) topology employed in 1x simulations. Mutation rates and numbers of generations per branch were set to give expected per site silent
divergence of 0.05 for the m, s, t, y, e, o, ty, and eo lineages and 0.075 and 0.025 for the ms and tyeo lineages, respectively, for equilibrium MCU = 0.7.
Abbreviations for ancestral nodes are shown below and to the right of the nodes.
doi:10.1371/journal.pone.0001065.g002
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tree topology was not varied among simulations. All simulations

were initiated with a ‘‘burn-in’’ period of $2/u generations to

insure independence among replicates (longer burn-in periods

were used for high MCU scenarios). A total tree length of 9,000

generations from the mstyeo node gave distances of approximately

5% synonymous divergence on the m, s, t, y, e, o, ty, and eo lineages

for the equilibrium MCU = 0.7 case. Simulations under this set of

parameter values will be referred to as the ‘‘1x’’ scenario. Data

were also produced for trees with the same topology but double

(26) and half (0.56) the numbers of generations on each branch.

Non-equilibrium codon usage was simulated by adjusting

effective population size or mutation parameters at the mstyeo

node following the burn-in. Both increasing codon bias (larger Ne

or reduced u/v) and decreasing bias (smaller Ne or elevated u/v)

were simulated. Values of 26 and 1/36 the initial Ne and 1/26
and 26 the initial u/v were chosen to give pu:up fixation ratios of

approximately half and double the equilibrium values for an initial

MCU of 0.7. All parameters were held constant following the

change at the ancestral node. For all simulations, the lineage and

fitness class of each fixation was recorded and the resulting extant

sequences were stored. Extant sequences were employed to

generate inferences of the numbers and types of changes for

comparisons to the numbers of ‘‘actual’’ (simulated) changes.

Reliability of Ancestral Inference
Simulated sequence data were analyzed using BASEML in the

PAML software package (Version 2.0k) [63]. This program takes

a gene tree and sequence data as input and determines maximum

likelihood estimates for branch lengths and parameters of a sub-

stitution model. These MLEs are employed in calculations of the

posterior probabilities of joint reconstructions of nucleotides at

ancestral nodes [65]. Two substitution models were employed for

inferences of ancestral states among simulated sequences.

Maximum parsimony (MP) inference was emulated using a Jukes-

Cantor [66] one parameter model with all branch lengths set to

small and equal values. Under this model, all nucleotide changes

occur at equal rates and the set of ancestral nucleotides (joint

reconstruction) that requires the fewest number of changes in the

tree has the highest probability. A unique joint reconstruction

requiring the lowest number of changes was assumed to reflect the

true ancestral states. This procedure emulates ‘‘simple’’ or equally-

weighted parsimony. In cases where multiple best reconstructions

had the same probability (i.e., the same number of changes), the

codon was not included in the analysis. Up and pu counts inferred

using this procedure were compared to results from an iterative

method of parsimony inference for 5 replicates each for initial

MCU = 0.5, 0.7, and 0.9 for stationary (1x), variable Ne (1/3Ne,

2Ne) and variable mutation (2u/v, 0.5u/v) simulations scenarios

(described below). Inferred numbers of changes were identical in

all cases. Simple parsimony inference was chosen for this analysis

because it has been employed extensively in Drosophila studies

[e.g., 08, 02, 14, 15, 06, 24, 25, 26, 16, 18].

The HKY85 substitution model [42] was also employed to infer

ancestral codons using BASEML. This model incorporates

unequal base composition and different transition and transversion

rates. Four base composition parameters are estimated from the

average base composition of the extant sequences. A transition/

transversion rate ratio and branch lengths are estimated by

maximizing their likelihoods over the data. The approach is

similar to one employed by Galtier and Boursot [40] except that

the BASEML model does not include a rate heterogeneity

parameter and calculates substitution parameters separately for

first, second, and third codon positions (in our simulations, only

the third codon position is variable). It is important to note

a difference in the parameterization of the HKY85 and GCpref

codon substitution models; under HKY85, transversions to the

same nucleotide are assigned the same rate (discussed below). The

joint probabilities of codon reconstructions were calculated

assuming independence among nucleotide reconstructions at

different sites and a minimal evolution model was used to infer

codon changes between nodes in the phylogeny. The probability

of a given ancestral codon configuration was treated as the

‘‘count’’ of inferred substitutions on a given reconstruction. For

example, consider a case where a configuration [G, A, G, G, G,

G] for extant nodes [m, s, t, y, e, o] gave inferred ancestral

configurations [G, G, G, G] and [A, G, G, G] for ancestral nodes

[ms, tyeo, ty, eo] with probabilities 0.9 and 0.1, respectively. For this

site, 0.9 G-.A changes were recorded in the s lineage and 0.1 A-

.G changes were recorded in the m lineage. The latter change

also requires either a G-.A change in the ms lineage or an A-.G

change in the tyeo lineage but reconstructions were performed on

an unrooted tree. This inference method will be referred to as

‘‘ML’’. It is important to note that this method averages over

possible ancestral reconstructions given their probabilities under

the HKY85 substitution model and differs from ML implementa-

tions that treat the most probable reconstruction as pseudodata.

The latter can yield strongly biased ancestral nucleotide

frequencies for scenarios similar to those considered here [67].

MP and ML inferred codon bias changes were compared across

200–500 replicates for each scenario (numbers for each scenario

are given in the figure legends). Mantel-Haentzel tests [68] were

employed to detect consistent differences in ratios of MP and ML

inferred counts of up and pu changes (summed across synonymous

families). Wilcoxon ranked signs tests [68] were conducted to

determine if differences between actual and inferred duppu were

consistently smaller for MP or ML. We refer to a method as ‘‘more

reliable’’ if inferred up/pu ratios differ between MP and ML

(Mantel-Haentzel test, P,0.05) and duppu values are closer to

actual values (Wilcoxon ranked signs test, P,0.05) for one of the

methods. Computer programs for simulating sequence evolution

and for analyses of BASEML results were written in the C

computer language and are available upon request from HA.

Parsimony vs likelihood Figures 3A and B show the actual

and inferred numbers of pu and up changes in the m lineage under

a simulated equilibrium 1x tree. S-.W changes are pooled in the

pu class and W-.S changes are pooled in the up class. Data for

changes within preference classes (S-.S and W-.W) are not

shown. Both MP and ML underestimate the numbers of changes

and the underestimation is greater for MP inference, especially for

up changes at high MCU. MP biases are similar to those described

in a number of previous studies [19,38,39,40,41]. Figures 3C and

D depict the ratio of inferred to actual numbers of changes and

show that, for both methods, underestimation decreases with

MCU for pu changes and increases with MCU for up changes. This

results in a bias toward negative dup,up (inflated inference of the

ratio of pu to up fixations; Figure 3E) which increases with MCU

for both MP and ML. The magnitude of the bias is considerably

greater for parsimony. Under ML, inferred pu:up ratios are inflated

by 4, 8, and 13% for MCU values of 0.5, 0.7, and 0.9, whereas for

parsimony, pu:up is inflated by 16, 28, and 47% for the same MCU

values. Even among closely related lineages at equilibrium base

composition, biases in ancestral inference can generate patterns

consistent with a genome-wide decline of MCU. Furthermore, the

decrease in dup,pu as a function of MCU mimics the expected trend

following a reduction in Nes (Figure 1B).

Examples of extant and ancestral codon configurations illustrate

some of the causes of these inference biases. Under neutrality

(MCU = 0.5), the probabilities of pu and up fixations are equal. MP
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underestimation of the numbers of changes (Figure 3A and B) partly

reflects the absence of inference in cases of multiple most

parsimonious reconstructions. Greater inference bias as a function

of MCU reflects a combination of differences in fixation probabilities

and per locus mutation rates for pu and up changes. Figure 4B–D

shows several ancestral codon configurations (ACCs) that could

underlie an extant codon configuration (ECC) that MP would infer

as a single pu change in the m lineage. The preference states of codons

present in the extant nodes [m, s, t, y, e, and o] are [u, p, p, p, p, p]

respectively (Figure 4A). Such an extant codon configuration will be

abbreviated ‘‘ECC_uppppp’’ assuming all ‘‘p’’ states are identical. In

the 1x equilibrium simulations, three ACCs underlie over 98% of

ECC_uppppp’s (Table 1). For MCU = 0.5, codons that underwent

a single pu in the m lineage are the predominant scenario (94.6%),

and double-hit codons with a up change in s and either a pu change in

ms or a up change in tyeo underlie 3.5% of the configurations. In all

cases, parsimony infers a single up change in the m lineage. For

MCU = 0.5, the expected frequencies of each of the pairs of ACC

types B and F, C and G, and D and H are equal since pu and up

changes have the same rates [ECC_puuuuu and its ancestral codon

configurations exchange p and u states at all nodes with those in

ECC_uppppp (Figures 4E–H)]. Under the symmetric model of no

selection and equal mutation rates, inference errors cancel. The

scenarios depicted in Figures 4C and G will be referred to more

generally as ‘‘child/ancestor reverse’’ changes (a child lineage is

a direct descendent of an ancestral lineage; in these cases, m and s are

the child lineages and ms is the ancestor) and those in Figures 4D and

H will be referred to as ‘‘child/sib-ancestor parallel’’ changes (in

these cases, m and s are child lineage and tyeo is the sibling to the

ancestral ms lineage).

An important difference between the ECC_puuuuu and

ECC_uppppp scenarios emerges when selection causes rate

variation between mutation classes. For MCU = 0.9, ECC_uppppp’s

that result from multiply-hit codons with a up change in s (Figures 4C

and D) increase to over 7% of the observations, whereas the fraction

of ECC_puuuuu’s resulting from a pu change in s at a multiply-hit

codon (Figures 4G and H) decreases with MCU to less than 2%

(Table 1). The asymmetry causes MP to overestimate the numbers of

low probability (pu) changes, and underestimate the numbers of high

probability (up) changes. This bias increases with the difference in the

probabilities (i.e., with MCU). In addition, misinference of up changes

in the m lineage following pu changes in ms (resulting in

ECC_pupppp) as pu changes in s will further contribute to

overestimation of pu in m and underestimation of up in s. Finally,

MP inference attributes parallel changes in sibling lineages to single

changes in the ancestral lineage. Among codons that experienced a pu

change, the fraction that experienced parallel substitutions (another

pu in a different lineage) decreases with MCU as selection reduces the

probability of pu fixations. The proportion of multiple-up hit codons

increases with MCU as selection elevates their fixation probabilities.

This asymmetry contributes to parsimony underestimation of dup,pu.

Branch lengths Reliability of ancestral inference is strongly

dependent on distances among nodes [69]. Simulations of

equilibrium codon bias were conducted for a tree with the same

topology as shown in Figure 2 but with varying branch lengths. A

0.56 tree (half the 16numbers of generations on all branches) and

a 26 tree (double the 16 numbers of generations on all branches)

were examined. Inference biases are smaller in the shorter tree

(Figure 5C) and considerably greater in a 26 tree (Figure 5F). The

MP bias in dup,pu inference as a function of MCU in the 26scenario

is dramatic and reflects a striking underestimation of up changes

(inferred values ,50% of the actual numbers for MCU.0.8). These

patterns reflect the increase in the proportions of multiply-hit codons

with longer branch lengths (1.7, 5.7, and 16.7% of codons

experienced .1 change since the mstyeo node in the 0.56, 16, and

26 scenarios, respectively for MCU = 0.7).

ML ancestral reconstruction bias ML inference, though

more reliable than MP, also shows a bias toward negative dup,pu

with MCU (especially in the 26 tree; Figure 5F). Under the

HKY85 model, four base composition parameters [p = (pA, pT,

pC, pG)] are estimated from extant sequences and the transition/

transversion rate ratio (k) is estimated from patterns of sequence

Figure 3. Inference of pu and up substitutions on the m lineage under equilibrium codon bias evolution. The numbers of hits and the ratios of
inferred to actual hits reflect averages across 300 replicates of the 1x equilibrium scenario. X-axis scales apply to graphs in the same column. The
legend in A applies to B and E and the legend in C applies to D. Reliability of dup,pu inference was greater for ML than for MP for MCU$0.6 (see text for
criteria).
doi:10.1371/journal.pone.0001065.g003
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divergence. Because the parameters are calculated separately for

the three codon positions and because the simulated scenario is

one of equilibrium base composition, ancestral inference should be

more accurate than MP. Differences in the parameterizations of

the HKY85 and GCpref codon models appear to underlie the

observed ML biases. Under HKY85, transversion changes to the

same nucleotide occur at the same rate. For example, C-.A and

T-.A occur at rate pA and A-.C and G-.C occur at rate pC.

Under the GCpref codon model, transversions to the same

nucleotide consist of one mutation affecting fitness (C-.A is

unpreferred and A-.C is preferred) and one neutral mutation (within

a fitness class: T-.A and G-.C). If a single rate is estimated for

transversions to A, the C-.A (unpreferred) rate will be overestimated

and the T-.A (neutral) rate will be underestimated. For transversions

to C, the A-.C rate will be underestimated and the G-.C rate will

be overestimated. Overall, the rates of preferred and unpreferred

transversions will be underestimated and overestimated, respectively,

and this error will increase with MCU. This leads to underestimation

of dup,pu with MCU, a bias similar to MP. ML inference for data

simulated under the exact parameterization of the HKY85 model

Figure 4. Ancestral codon configurations in simulations of codon bias evolution. Trees representing extant codon configurations consistent with
single silent changes in the m lineage, ECC_uppppp (A) and ECC_puuuuu (E), are shown. The three most common ancestral codon configurations
underlying these extant codon configurations are shown in B, C, and D for ECC_uppppp and in E, F, and G for ECC_puuuuu. Trees C and G reflect
child/ancestor reverse changes and trees D and H show child/sib-ancestor parallel changes. The relative frequencies of ancestral codon
configurations underlying ECC_uppppp and ECC_puuuuu in the codon bias simulations are shown as bubble plots beneath the trees. The sizes of the
bubbles reflect the relative numbers of ancestral codon configurations in each class for three different MCU values. For the non-equilibrium scenarios
(1/3Ne and 2Ne), the proportion of each ancestral codon configuration among the extant configurations relative to the proportion under equilibrium
codon bias evolution are given. The data are from Table 1.
doi:10.1371/journal.pone.0001065.g004
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showed no bias in dup,pu, even under strong base composition bias in

a 26 tree (Figure 6). Seemingly minor deviations from model

assumptions can lead to considerable biases for relatively highly

biased genes and/or long branches.

Changes in selection intensity Constancy of parameters

governing molecular evolution may often be violated in

Drosophila among closely related lineages [08, 02, 20, 21, 06,

70, 15, 24, 25, 26, 16, 35, 37] as well as among distantly related

taxa [71,22,23,27]. Ancestral inference under fluctuating codon

bias is examined below.

Two scenarios of changes in selection intensity were examined:

a three-fold decrease in Ne (1/3Ne) and a two-fold increase in Ne (2Ne).

Parameter changes were invoked at the mstyeo node and substitution

probabilities differing from those in the mstyeo lineage were employed

for evolution within the D. melanogaster subgroup. These probabilities

were kept constant within the subgroup. However, because base

composition changes directionally during the course of the

simulation, per locus mutation rates are not constant.

For the 1/3Ne scenario (GC content decline), MP and ML show

contrasting biases in dup,pu inference (Figures 7A to C). Parsimony

Table 1. Ancestral codon configurations underlying ECC_uppppp and ECC_puuuuu trees
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Scenariob MCUi
c ECC_upppppa ECC_puuuuua

totald B C D total F G H

1x 0.5 13,688 12,951 (0.946) 364 (0.027) 110 (0.008) 14,156 13,441 (0.949) 369 (0.026) 123 (0.009)

0.7 14,001 13,067 (0.933) 502 (0.036) 167 (0.012) 10,710 10,269 (0.959) 194 (0.018) 71 (0.007)

0.9 8,744 7,934 (0.907) 486 (0.056) 142 (0.016) 4,618 4,498 (0.974) 41 (0.009) 9 (0.002)

1/3Ne 0.5 13,768 13,059 (0.949) 358 (0.026) 109 (0.008) 13,626 12,939 (0.950) 322 (0.024) 113 (0.008)

0.7 17,529 16,619 (0.948) 511 (0.029) 106 (0.006) 9,238 8,715 (0.943) 217 (0.023) 115 (0.012)

0.9 19,039 18,034 (0.947) 653 (0.034) 44 (0.002) 3,623 3,368 (0.930) 72 (0.020) 104 (0.029)

2Ne 0.5 13,725 13,046 (0.951) 315 (0.023) 112 (0.008) 13,929 13,219 (0.949) 329 (0.024) 127 (0.009)

0.7 9,033 8,108 (0.898) 401 (0.044) 323 (0.036) 12,828 12,477 (0.973) 150 (0.012) 20 (0.002)

0.9 2,307 1,609 (0.697) 166 (0.072) 438 (0.190) 5,056 4,992 (0.987) 9 (0.002) 1 (0.000)

aExtant codon configurations (ECC) from Figure 4.
bequilibrium (1x), decreasing (1/3Ne), and increasing (2Ne) codon bias simulations.
cInitial values of major codon usage (at the mstyeo node).
dNumbers of observations of each ECC and the numbers (proportions) of ancestral codon arrangements (ACC) underlying the ECC’s (B, C, D and F, G, H correspond to

ACC’s shown in Figure 4). The numbers are pooled across 300 replicates and only trees with two different codon states among all nodes are included.
doi:10.1371/journal.pone.0001065.t001..
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Figure 5. Reliability of ancestral codon bias inference under equilibrium evolution. A, B, and C show ratios of inferred to actual values and the
dup,pu for the 0.56 tree (averages among 500 replicates) and D, E, and F show values for the 26 tree (averages among 200 replicates). Actual and
inferred numbers of hits are not shown. The legend in A applies to B, D, and E and the legend in C applies to F. X-axis scales are identical for graphs in
the same column.
doi:10.1371/journal.pone.0001065.g005
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biases are similar to the equilibrium case; both pu and up changes

are underestimated, but the magnitude of pu underestimation

decreases with MCU whereas up underestimation increases as

a function of codon bias. dup,pu is biased downward and the bias

increases with MCU in a manner similar to the equilibrium case.

Because the actual dup,pu is negative (Figure 1B), MP exaggerates

reductions of MCU.

Examination of extant and ancestral codon configurations

reveals differences in the causes of similar MP reconstruction

biases under equilibrium and decreasing codon bias. Under

reduced Ne, the ratio of fixation probabilities of pu and up

mutations decreases less as a function of MCU than under

stationarity. Table 1 and Figure 4 show that, among EC-

C_uppppp’s, the frequencies of multiply-hit codons do not

increase with MCU as in the equilibrium case. However, increases

in the numbers of ECC_uppppp’s with MCU (in contrast to

decreases under equilibrium) lead to considerable numbers of

misinferred up changes at high MCU. For ECC_puuuuu, the

frequency of multiply-hit codons increases with MCU rather than

decreasing as in the equilibrium scenario. The prevalence of

ECC_uppppp results in dup,pu inference biases similar to the

equilibrium case.

ML inference of pu and up changes under relaxed selection

differs considerably from MP results. pu underestimation increases

and up changes are overestimated with increasing Nes. This causes

overestimation of dup,pu as a function of MCU (bringing dup,pu

closer to zero; Figure 7C). The bias in the opposite direction

compared to ML inference under equilibrium (Figure 3E) is

a consequence of the method for estimating base composition

parameters. The lineages examined are relatively short compared

to the time required to reach equilibrium. The base composition of

extant sequences reflects parameter values (Nes and u/v) from the

ancestral mstyeo lineage rather than values on the lineages on which

fixations are inferred. For a given ECC, ancestral reconstructions

are assigned probabilities according to equilibrium expectations

given the base composition of the extant sequences; rate

parameters are biased upward for up changes and downward for

pu changes. dup,pu inference is biased toward positive values

because parallel up changes are assigned inflated probabilities and

parallel pu changes are given underestimated probabilities. For

ECC_uppppp, the proportions of codons with multiple up changes

are considerably smaller than under equilibrium (roughly 50 and

14% for MCU = 0.7 and 0.9, respectively; Figure 4; Table 1) and

ML overestimates this proportion. The larger numbers of codons

Figure 6. Reliability of ML inference for evolution under the GCpref
codon and HKY85 models. dup,pu values are shown for 4-fold
synonymous codons for ML inference under the equilibrium GCpref
codon model and for data simulated under the HKY85 substitution
matrix. The latter matrix was set to give identical expected numbers of
substitutions and equilibrium GC content for the two scenarios. The
legend applies to both graphs and the y-axis scales are identical in the
two graphs. Note that dup,pu inference biases are larger for 4-fold
redundant codons than for 2-fold redundant codons under the GCpref
codon model. Data are averaged across 300 replicates.
doi:10.1371/journal.pone.0001065.g006

Figure 7. Reliability of ancestral codon bias inference under non-equilibrium evolution: variable selection intensity. The legend in A applies to B,
D, and E. The legend in C also applies to F. X-axis scales are identical for graphs in the same column. Note that the MCU values reflect values at the m
node and differ from ancestral values. For the 1/3Ne scenario, reliability of dup,pu inference was greater for ML than for MP for 0.6#MCU#0.8. For 2Ne,
ML was more reliable for MCU$0.8 (see text for criteria). Data are averaged across 300 replicates.
doi:10.1371/journal.pone.0001065.g007
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with pu changes leads to considerable up overestimation

(Figure 7B). For ECC_puuuuu, the proportions of codons with

multiple pu changes are much larger than under equilibrium

(roughly 26 and 156 for MCU = 0.7 and 0.9, respectively) and

ML underestimates their probabilities.

Under the 2Ne scenario (increasing GC), both MP and ML

underestimate dup,pu as a function of MCU (Figures 7D–F). Actual

dup,pu values are positive (Figures 1C and D) and both methods

bias the statistic toward zero. Because base composition in extant

sequences reflects parameter values prior to the increase in Ne (i.e.,

lower GC content), HKY85 underestimates up rates and over-

estimates pu rates. Ancestral unpreferred sites have a much larger

probability of undergoing up changes in multiple lineages than

under equilibrium (Figure 4; Table 1); for MCU = 0.9, over 30%

of ECC_uppppp observations reflect multiply-hit codons. Both

ML and MP underestimation of up is larger than in the

equilibrium case, but ML underestimation is less severe because

multiple-up hit scenarios are assigned some probability. For

ECC_puuuuu, multiple-hit scenarios are less common than under

equilibrium (Figure 4; Table 1). Thus, MP shows less un-

derestimation of pu as a function of MCU than in the equilibrium

case, but ML overestimates pu changes. In contrast to the 1/3Ne

scenario, the numbers of ECC_puuuuu observations are larger

than the numbers of ECC_uppppp’s for high MCU values. The

magnitude of the resulting pu overestimation is substantial for both

MP and ML (Figure 7D). Under this particular departure from the

assumptions of both methods, ML and MP biases in dup,pu

inference are similar across a wide range of MCU.

Changes in mutation bias Ancestral inference were also

examined for non-stationary codon bias evolution following

changes in mutation rates. For these simulations, expected up:pu

ratios of 0.5 and 2.0 were achieved by doubling either u (per site

rate of S-.W mutations) or v (per site rate of W-.S mutations)

relative to their values in the stationary 16 simulations. The

scenarios will be referred to as 2u/v and 0.5u/v, for doublings of u

and v, respectively. Within-fitness class mutation rates, W-.W and

S-.S, were not changed. Mutation rate changes were

implemented at the mstyeo node and all parameters were kept

constant following the change. Expected pu:up fixation ratios are

equal to the new u:v ratios immediately following a change in the

mutation rate, but the fixation ratios gradually approach the

equilibrium value of one (rates of approach to equilibrium are

positive functions of initial MCU). Thus, the actual excesses of up

or pu changes on the m lineage are smaller than two-fold and

decrease with MCU (Figures 8C and F).

For the 2u/v scenario of mutation-driven reductions in MCU,

parsimony underestimates decreases in codon bias for low MCU

genes, but overestimates codon bias changes for higher MCU

(Figure 8C). In the absence of selection (MCU < 0.5), parsimony

underestimation is greater for the more common pu changes than

for up changes. Increasing underestimation of dup,pu as a function

of MCU is similar to the pattern observed under equilibrium

(Figure 3E). As selection increases the ratio of up:pu fixation

probabilities, parsimony misinference at multiple up-hit codons

leads to underestimation of up changes.

ML underestimates mutation-driven decreases in codon bias for

low and intermediate MCU. Because parameters are estimated

from sequences that have not reached equilibrium base compo-

sition, rates of up and pu are over- and under-estimated,

respectively. This bias in parameter estimation leads to error in

the probabilities of joint reconstructions. Decreasing underestima-

tion of dup,pu with MCU (the decline of codon bias is overestimated

at very high MCU) probably reflects differences between the

HKY85 and GC codon pref models (rates are estimated for pooled

Figure 8. Reliability of ancestral codon bias inference under non-equilibrium evolution: variable mutation. The legend in A applies to B, D, and E.
The legend in C applies to F. X-axis scales are identical for graphs in the same column. Note that MCU values are given for the m node and have
shifted from ancestral values. For the 2u/v scenario, reliability of dup,pu inference was greater for ML than for MP for MCU$0.8, but MP was more
reliable for MCU#0.6. For 0.5u/v, dup,pu was more reliably inferred by ML than by MP for MCU$0.7, but MP was more reliable for MCU = 0.5. Data are
averaged across 300 replicates.
doi:10.1371/journal.pone.0001065.g008
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classes of neutral and non-neutral mutations; see above). With

increasing MCU, the latter bias compensates, then over-

compensates, for the bias introduced by non-stationary base

composition.

Inference biases were considerable for mutation-driven in-

creases in codon bias. In the 0.5u/v scenario, both selection and

mutation elevate ratios of per site up:pu substitutions. Parsimony

misinference at multiple-up hit codons increases dramatically as

a function of MCU (Figure 8E) and results in large underestima-

tion of dup,pu (Figure 8F). For initial MCU = 0.95, parsimony infers

dup,pu = 20.22 where the actual value is 0.25.

ML biases were similar in direction, but much smaller in

magnitude, than parsimony biases for the 0.5u/v scenario.

Inference biases reflect under- and over-estimation of up and pu

rates because base composition parameters are estimated from

sequences that are far from equilibrium. Fitting data generated

under GCpref codon to the HKY85 model exacerbates these

biases, leading to greater differences between inferred and actual

dup,pu than for ML in the 2u/v scenario.

Lineage-specific departures from equilibrium The non-

stationary scenarios considered above have employed a single

parameter change at the mstyeo node and similar departures from

equilibrium among lineages. A large number of scenarios of

lineage-specific departures from equilibrium are possible, but some

general results can be obtained from consideration of a set of

scenarios based on findings in the D. melanogaster subgroup.

Data from nineteen loci are consistent with reductions in codon

bias in the m, y, o, and eo lineages, and increases in codon bias in the t

and ty lineages [35]. For these genes, patterns on the s and e lineages

appear to be consistent with equilibrium MCU. Changes in codon

bias were assigned accordingly in the simulation. For simplicity, all

reductions in codon bias were modeled as 1/3Ne and all increases

were modeled as 2Ne. Because changes in the ancestral ms and tyeo

lineages are unknown, all combinations of increases (2Ne), decreases

(1/3Ne), and stationarity for these two lineages were employed (nine

scenarios). Parameters were changed at the ancestral node of

a lineage and were held constant within the lineage.

To allow comparisons between equilibrium and lineage-specific

non-equilibrium simulations, differences between inferred and actual

dup,pu are plotted for each lineage in Figure 9 and Figure S1. Given

the phylogenetic distances in the D. melanogaster subgroup, dup,pu

inference biases under the mixed non-equilibrium simulation can

be understood, to a large extent, by considering extant codon

configurations consistent with both a single change or changes in

two lineages (ECC_SD for extant codon configurations consistent

with single or double hits). Because the y lineage is decreasing in

bias and the ancestral ty lineage is increasing in MCU, up in ty

followed by pu in y has an elevated occurrence relative to the 16
stationary case. dup,pu under ML inference is elevated in t and y,

and reduced in ty. Because y and eo are both losing codon bias,

parallel pu changes in these lineages are more common, but such

a scenario does not result in an ECC_SD. Relative to the

Figure 9. Reliability of ML codon bias inference under lineage-specific non-stationarity. Differences between inferred and actual dup,pu values are
plotted as a function of MCU for each lineage (averages across 300 simulations are plotted). The legend applies to all graphs. X-axis scales apply to all
graphs in the same column. Y-axis scales are identical among all graphs. The lineage-specific scenarios are as follows: stationary MCU (st) in ,l.s and
e, decreasing MCU (1/3Ne) in m, y, o, and eo, and increasing MCU (2Ne) in t and ty. Scenarios were varied in the ancestral ms and tyeo lineages. For the
ms lineage: black (st), red (1/3Ne), blue (2Ne). For the tyeo lineage: thick (st), thin (1/3Ne), dotted (2Ne).
doi:10.1371/journal.pone.0001065.g009
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equilibrium case, a decline of codon bias in the m lineage elevates

the probability of up changes in ms followed by pu reversals in m.

Because ML underestimates this probability, dup,pu is elevated in

both m and s.

Rate heterogeneity in ancestral lineages can have a strong

impact on inference in their descendent lineages. If codon bias is

increasing in the ms lineage (blue lines in Figure 9), then up in ms/

pu in m reversals become more common. Such changes elevate

dup,pu for both the m and s lineages. In addition, increased

frequencies of parallel up changes in the ms and ty lineages decrease

dup,pu in both ty and in eo. The length of the ms lineage contributes

to substantial effects of these double-hit scenarios on dup,pu

inference. Decreases in MCU on the ms lineage (red lines in

Figure 9) have the opposite effect on dup,pu inference. Reverse

changes, pu in ms/up in s, cause decreased dup,pu inference in m and

s, and parallel pu changes in ms and eo result in elevated dup,pu in ty

and eo (relative to equilibrium in ms). Note that dup,pu inference on

the t, y, e, and o lineages is relatively insensitive to departures from

stationarity in ms and tyeo (Figure 9).

Non-stationary evolution on the ancestral tyeo lineage has a smaller

impact on dup,pu inference than departures from equilibrium on the

longer ms lineage. Increasing MCU on the tyeo lineage enhances the

probability of up in tyeo/pu in eo reversals. This results in elevated

dup,pu in both eo and ty. Higher occurrences of parallel up changes in s

and tyeo result in decreased dup,pu in both s and m. Decreasing codon

bias in tyeo has the opposite effects on dup,pu inference in these

lineages. The elevated occurrence of pu in tyeo/up in ty reversals

decreases dup,pu in ty and eo and parallel pu changes in tyeo and m leads

to elevated dup,pu for the s and m lineages.

MP performance can be understood by considering the same

sets of ECC_SD’s. Inference biases (relative to the stationary 16
case) for the mixed non-equilibrium simulations are similar in

direction, but generally greater in magnitude, to those under ML.

Figure S1 shows considerable MP underestimation of dup,pu, even

at intermediate MCU, for the m, s, e, o, and eo lineages for most of

these scenarios.

These results suggest that ML generally allows more reliable

inference of ancestral codon usage than MP for lineages within the

D. melanogaster subgroup. In addition, inference biases do not

appear to have contributed substantially to the conclusion of

frequent codon bias fluctuations within the D. melanogaster

subgroup [35]. In particular, biases in ML dup,pu inference for

the t, y, e, and o lineages appear to be relatively small if the

magnitude and direction of departures from equilibrium in our

simulations are correct. Inference biases on the s, ty and eo lineages,

however, can be considerable if codon bias has increased on the ms

lineage. The sensitivity of inference on the s lineage to processes

occurring in ancestral lineages appears to result from the

combination of a strong departure from equilibrium on a sibling

lineage, a long parent lineage, and the lack of an outgroup for the

ms clade. It is important to note that longer lineages or greater

departures from equilibrium could elevate dup,pu biases from those

shown in Figure 9. Other factors that affect ancestral inference (i.e.,

the locations of lineages in the phylogeny and species sampling) are

discussed in Results S1 and S2.

DISCUSSION

Reliability of ancestral codon usage inference
The accuracy of ancestral inference, even among relatively closely

related species, has a complex dependence on branch lengths, the

location of lineages within a phylogeny, rate heterogeneity among

mutation classes (levels of base composition bias) and among

lineages (changes in base composition). Parsimony is susceptible to

errors in ancestral reconstruction when base composition is biased

[19,38,39,40,41]. For lineages at stationary base composition,

inference biases can yield patterns mimicking departures from

equilibrium codon bias toward a loss of the common state (excess

of unpreferred substitutions); the increase in this bias with the

degree of base composition skew can lead to false inference of

reductions in selection intensity for codon bias.

For the scenarios considered in this study, maximum likelihood

implementation of the HKY85 model is generally (often consid-

erably) less biased than MP. Estimation of separate substitution

rates for classes of nucleotide changes is desirable when base

composition is skewed. However, departures from steady-state can

cause strong biases in ancestral reconstruction among closely

related species. The long lag-time between parameter changes and

the achievement of a new equilibrium base composition is

problematic for models that infer substitution rates from the base

composition of extant sequences. Because the time-scale on which

parameters vary appears to often be shorter than the time scale

over which equilibrium is achieved [35,37], then inference using

stationary models must be treated with caution.

The direction and magnitude of departures from equilibrium as

well as the branch lengths of a given lineage, its sibling lineage, direct

ancestral lineages, and the sibling lineages to its direct ancestors can

have a strong impact on the reliability of ancestral inference. For

example, child/ancestor reversals will be prevalent if departures

from equilibrium are in opposing directions in branches with direct

descendent relationships. Parallel changes will be common when

departures from equilibrium are in the same direction in sibling

lineages or in a lineage and the sibling lineage of a direct ancestor.

Bursts of adaptive codon bias evolution on multiple lineages can

substantially reduce the reliability of ancestral inference.

Among the lineages in our simulated data, ancestral inference is

generally less biased in the t, y, e, and o lineages than in the m, s and

ty, eo lineages. The greater accuracy of inference for terminal

lineages in the tyeo clade results, in part, from shorter parental

lineages than for the m and s lineages. In addition, for the t, y, e,

and o lineages, data from the outgroup ms clade often eliminates

the possibility of single-hit ancestral configurations consistent with

child/sib-parent parallel changes. For these lineages, inference

biases can be predicted given sequence data from species within

the subgroup whereas biases for the m, s, ty and eo lineages are

strongly dependent on unknown processes in the ancestral ms and

tyeo lineages (Figure 9).

Improving inference methods for ancestral codon

usage
Reliability of ancestral reconstructions is compromised by in-

correct trees, errors in sequence alignment, incorrect substitution

models, and insufficient data to estimate parameters of the

substitution model. The analyses above assumed knowledge of the

correct tree topology, no alignment errors, and sufficient data for

ML parameter estimation. This study focused on the effects of

incorrect substitution models.

Ancestral reconstructions can be improved both by data

selection and by model improvements. Blanchette et al. [72] found

that a ‘‘star-like’’ phylogeny allows reliable inference of ancestral

mammal sequences given stationary evolution and sufficient

sampling of extant taxa. Branch lengths are critical determinants

of the accuracy of ancestral inference and errors can be minimized

by choosing data from closely related species (with short ancestral

lineages). However, even for the low levels of divergence examined

in this study, departures from substitution model assumptions led

to biases in ancestral reconstructions for high MCU genes (for MP)

Ancestral Inference

PLoS ONE | www.plosone.org 11 October 2007 | Issue 10 | e1065



and for departures from steady-state (for MP and ML). These

effects can be minimized by restricting data to moderately biased

genes (MCU,0.8). However, biases were clearly detectable for

intermediate MCU genes in a number of examined scenarios, and

longer lineages or greater fluctuations in base composition than

those studied here can inflate these biases. For example, our

simulations assumed homogeneity of parameters within genes. A

number of findings support within-gene heterogeneity in Nes at

silent sites [73,74,75,20,21,76,77,17,78] which could elevate

inference biases because rate parameters at variable sites will be

underestimated.

A number of improvements in ancestral inference methods could

enhance comparisons among closely related species. Uncertainties in

both tree topologies and parameter estimates have been incorpo-

rated in Bayesian approaches to ancestral state reconstruction

[79,80,67,81]. Rate heterogeneity parameters are included in Galtier

and Boursot’s [40] ML method. The equilibrium assumption

appears to be a critical limitation in the methods employed here

and Yang and Roberts [82] and Galtier and Guoy [83] have

incorporated parameters for fluctuating base composition in

methods to infer ancestral GC content (these implementations do

not calculate posterior probabilities of ancestral states).

Modifications to the simple parsimony approach could also

improve inference of ancestral codon usage. The MP method

employed above eliminated data for codons at which multiple

reconstructions give the least number of changes in the gene tree.

Such data could be included by allocating equal probabilities

among most parsimonious reconstructions. In addition, classes of

mutations can be assigned ‘‘weights’’ to account for asymmetric

substitution rates [84].

Key considerations for substitution models may vary consider-

ably among taxa and genetic distances. Neighboring base effects

play a strong role in mammalian genomes and transition/

transversion rate ratios can be large in mtDNA evolution [85].

For evolutionary studies of coding regions within the D. melanogaster

subgroup, a codon substitution model that accommodates both

heterogeneity in rates among sites and fluctuations in base

composition may be appropriate. Nielsen et al. [86] have recently

developed a method that allows fluctuations in codon bias within

a gene tree and Arndt [33] and Hernandez and co-workers [87]

have proposed methods that account for non-stationarity and

neighboring base effects. However, such models may entail trade-

offs; increases in the amount of data required to estimate a larger

number of parameters may preclude analyses of gene- and lineage-

specific evolution except for large genes and/or long lineages [83].

The average inferred numbers of pu and up per gene per lineage

are 8.0 and 5.7, respectively, within the D. melanogaster subgroup

for the nineteen genes examined in [35].

Finally, the data simulated for this study were generated using

an instantaneous substitution model and did not consider variation

within species. For several lineages in the D. melanogaster subgroup,

the most recent common ancestor for within-species alleles may lie

close to ancestral nodes. Contrasts of the numbers and the site

frequency spectra of newly arisen mutations within populations

and among closely related species [88, 89, 08, 10, 90, 13] can be

powerful approaches to identify the roles of weak selection and

adaptive evolution for different functional classes of mutations [09,

91]. Such methods can determine the causes of codon bias and

protein evolution as well as mechanisms of regulatory region and

intron evolution [e.g., 92]. Studies of the reliability of ancestral

inference for polymorphism/divergence data [e.g., 93] will be

necessary to determine the robustness of such analyses.

SUPPORTING INFORMATION

Methods S1 The major codon preference model.

Found at: doi:10.1371/journal.pone.0001065.s001 (0.04 MB

DOC)

Figure S1 Reliability of parsimony codon bias inference under

lineage-specific non-stationarity. Differences between inferred and

actual dup,pu values are plotted as a function of MCU for each

lineage (averages across 300 simulations are plotted). The legend

applies to all graphs. X-axis scales apply to all graphs in the same

column. Y-axis scales are identical among all graphs and are

identical to those in Figure 9 to allow comparisons between

methods. The lineage-specific scenarios are identical to those in

Figure 9: stationary MCU (st) in s and e, decreasing MCU (1/3Ne)

in m, y, o, and eo, and increasing MCU (2Ne) in t and ty. Scenarios

were varied in the ancestral ms and tyeo lineages. For the ms

lineage: black (st), red (1/3Ne), blue (2Ne). For the tyeo lineage: thick

(st), thin (1/3Ne), dotted (2Ne).

Found at: doi:10.1371/journal.pone.0001065.s002 (16.60 MB

TIF)

Results S1 Lineage-dependent ancestral reconstruction biases.

Found at: doi:10.1371/journal.pone.0001065.s003 (1.68 MB

DOC)

Results S2 Species composition and ancestral reconstruction

biases.

Found at: doi:10.1371/journal.pone.0001065.s004 (0.64 MB

DOC)
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